首页|考虑风电出力不确定性的多源联合系统双层优化调度

考虑风电出力不确定性的多源联合系统双层优化调度

扫码查看
针对含风-火-储的多源联合系统,风电出力具有不确定性的特点,风机在特定时间段内的预测功率与实际功率之间存在误差,当风机实际出力无法满足调度计划中安排的功率时会导致系统经济效益大幅下降.为此,文中提出了考虑风电预测误差和需求侧响应的双层优化策略,上层模型以风电、火电和可平移负荷总运行成本最少为目标,采用改进粒子群算法(Improved Particle Swarm Algorithm,IPSO)制定火电和可平移负荷的最优调度策略,然后通过Gibbs法对风机最大出力预测误差的概率密度函数进行抽样获取一定量的样本,得到各样本上层电源的功率缺额;下层模型以储能和可中断负荷总运行成本最少为目标,采用线性规划方法对冲上层电源功率缺额,进而制定下层模型电源调度策略.在大量抽样样本背景下,通过对比各样本总成本函数值的期望和方差验证了所提双层优化策略的经济性和有效性.
Bi-level Optimal Scheduling of Multi-source Combined System Considering Wind Power Output Uncertainty
For a multi-source integrated system incorporating wind,fire,and storage,the wind power output exhibits uncertainty.There is a discrepancy between the predicted and actual power of the wind turbine during specific time periods.When the actual output of the wind turbine fails to meet the scheduled power in the dispatch plan,it leads to a significant reduction in the economic efficiency of the system.To address this issue,this paper proposes a two-layer optimization strategy that considers wind power prediction errors and demand-side response.The upper-level model aims to minimize the overall operating cost of wind power,thermal power,and dispatchable loads,utilizing an Improved Particle Swarm Algorithm(IPSO)to formulate optimal scheduling strategies for thermal power and dispatchable loads.Subsequently,the Gibbs method is employed to sample the probability density function of the maximum output prediction error of the wind turbine,obtaining a certain amount of samples and determining the power deficit for each sample in the upper-level power sources.The lower-level model aims to minimize the overall operating cost of energy storage and interruptible loads.It employs linear programming to offset the power deficits from the upper-level sources,thereby formulating the lower-level model's power dispatch strategy.With a large number of sampled scenarios,the proposed two-layer optimization strategy's economic and effective nature is validated by comparing the expected value and variance of the total cost function values for each sample.

wind power prediction errordemand responseipsocollaborative optimizationgibbs sampling

陈一鸣、刘赟静、王金鑫

展开 >

现代电力系统仿真控制与绿色电能新技术教育部重点实验室(东北电力大学),吉林 吉林 132012

国网吉林省电力有限公司吉林供电公司,吉林 吉林 132011

风电预测误差 需求侧响应 IPSO 协同优化 Gibbs抽样

吉林省科技发展计划国际科技合作项目国家电网科学发展计划

20240402070GH5108-202218280A-2-313-XG

2024

东北电力大学学报
东北电力大学

东北电力大学学报

影响因子:1.157
ISSN:1005-2992
年,卷(期):2024.44(1)
  • 21