首页|基于STL-Crossformer的综合能源系统多元负荷预测

基于STL-Crossformer的综合能源系统多元负荷预测

扫码查看
综合能源系统的多元负荷预测对于系统的运行和调度至关重要.传统的预测模型没有充分捕捉时间序列的长期依赖性或没有考虑多元负荷间的耦合关系,限制了预测准确性的提高.为解决综合能源系统中多元负荷预测的挑战,文中提出了一种融合季节性趋势分解和Crossformer的预测模型.首先利用季节性趋势分解把原始负荷数据分解为三个子序列;然后通过维度分段嵌入(Dimension Segment Wise embedding,DSW)和两阶段注意力机制(Two Stage Attention,TSA),提取多元负荷数据的跨时间相关性和跨维度相关性;最终利用分层编解码器结构生成预测结果.文中在实测负荷数据集上进行了对比实验,结果表明文中提出的模型相比其他对比模型具有更高的准确性.
Multi-Load Forecasting of Integrated Energy Systems Based on STL-Crossformer
Multi-load forecasting in integrated energy systems is crucial for the operation and scheduling of the system.Traditional forecasting models have not fully captured the long-term dependencies in time series or considered the coupling relationships between multiple loads,limiting improvements in forecasting accuracy.To address the challenges of multi-load forecasting in integrated energy systems,this paper proposes a forecasting model that integrates Seasonal Trend Decomposition and Crossformer.Initially,the original load data is decomposed into three sub-sequences using seasonal trend decomposition.Then,by employing a dimension-segmented embedding method and a two-stage attention mechanism,the model extracts cross-time and cross-dimensional correlations of multi-load data.Finally,a hierarchical encoder-decoder structure is utilized to generate forecasting results.Comparative experiments on real load datasets demonstrate that the model proposed in this paper has higher accuracy compared to other comparison models.

integrated energy systemsmulti-load forecastingseasonal trend decompositionattention mechanismcoupling relationships

蔡屹、张薇

展开 >

现代电力系统仿真与控制与绿色电能新技术教育部重点实验室(东北电力大学),吉林 吉林 132012

综合能源系统 多元负荷预测 季节性趋势分解 注意力机制 耦合关系

吉林省科技发展计划国家电网科技项目

20220508016RCSGTYHT/21-JS-223

2024

东北电力大学学报
东北电力大学

东北电力大学学报

影响因子:1.157
ISSN:1005-2992
年,卷(期):2024.44(1)
  • 21