首页|基于VMD的电力系统一次调频混合储能系统容量优化研究

基于VMD的电力系统一次调频混合储能系统容量优化研究

扫码查看
将功率型储能和能量型储能组成混合储能系统,可大幅提升储能系统的对外出力.为充分利用混合储能参与风电场一次调频的优势并考虑经济性因素,提出一种基于变分模态的混合储能容量优化配置方法.首先,以最大化混合储能系统净效益为目标,建立数学模型;接下来,使用变分模态分解将目标信号分解为高频功率需求和低频功率需求;最后,以东北某 100 MW风电场为研究实例,取一个典型日的目标功率数据为基础,考虑储能充放电功率和荷电状态等约束条件,使用量子粒子群算法对目标模型进行求解.结果表明,经过优化的储能配置方案可以有效提高混合储能辅助风电场一次调频的经济性.
Optimal Configuration of Hybrid Energy Storage System for Primary Frequency Regulation Based on VMD
Power-type energy storage and energy-type energy storage can be combined in a certain proportion to form a hybrid energy storage system,which can significantly enhance the power output of the energy storage system.In order to fully utilize the advantages of hybrid energy storage in participating in the primary frequency regulation of wind farms and consider economic factors,a capacity optimization configuration method based on variation mode decomposition is proposed.Firstly,a mathematical model is established with the objective of maximizing the net benefits of the hybrid energy storage system.Next,the power demand signal is decomposed into high-frequency power demand and low-frequency power demand using the variation mode decomposition method.Finally,taking a 100 MW wind farm in the Northeast as a case study,based on power demand data for a typical day,considering constraints such as energy storage charging and discharging power and state of charge,the objective model is solved using the quantum particle swarm algorithm.The results show that the optimized energy storage configuration scheme can effectively improve the economic viability of hybrid energy storage for assisting the primary frequency regulation of wind farms.

hybrid energy storage systemprimary frequency regulationquantum particle swarm optimization algorithmcapacity configuration

蔡婷婷、薛文东

展开 >

现代电力系统仿真控制与绿色电能新技术教育部重点实验室(东北电力大学),吉林 吉林 132012

混合储能系统 一次调频 量子粒子群算法 容量配置

国家自然科学基金

U1766204

2024

东北电力大学学报
东北电力大学

东北电力大学学报

影响因子:1.157
ISSN:1005-2992
年,卷(期):2024.44(1)
  • 20