首页|基于空间简化和CNN-LSTM的区域风电功率日前网格预测方法

基于空间简化和CNN-LSTM的区域风电功率日前网格预测方法

扫码查看
新能源发电在全球范围内得到了越来越多的关注和发展,其中风能是最为常见和广泛应用的新能源形式.风电功率预测对于电力系统的稳定性、可靠性和经济性都具有重要的影响.文中为提高预测精度将风电场场站之间的空间依赖性纳入考虑,并解决网格预测建模困难和预测耗费大量时间和算力的问题,提出了一种基于集群简化的区域风电功率日前网格预测方法.首先,根据空间特性划分相似风电场,利用集群的汇聚效应,化简网络格数;其次,提取集群功率波动最为一致的气象特征,最大程度保留了所有风电场的空间特征;再次,处理输入输出数据形式,形成空间意义上的网格式数据,并通过卷积长短时记忆网络预测模型进行训练和预测;最后,将该方法应用于中国东北部某大规模风电集群验证其有效性.实验结果表明,文中所提出的方法相较于未经网格化简的方法RMSE和MAE分别下降了 0.24%和 0.05%,有效提高了风电集群日前功率预测精度.
Foreahead Grid Prediction of Regional Wind Power Based on Spatial Reduction and CNN-LSTM
New energy power generation has received more and more attention and development around the world,among which wind energy is the most common and widely used form of new energy.Wind power prediction has an important influence on the stability,reliability and economy of the power system.In order to improve the accuracy of wind power prediction,we consider the spatial dependence of wind power stations and solve the difficulty of grid prediction in the wind power grid.First,similar wind farms are divided according to their spatial characteristics,and the convergence effect of clusters is used to simplify the number of network grids.Secondly,the meteorological characteristics with the most consistent cluster power fluctuations were extracted,and the spatial characteristics of all wind farms were retained to the maximum extent.Thirdly,the input and output data form is processed to form the network format data in the spatial sense,and is trained and predicted by convolution of long and short-term memory network prediction model.Finally,the method was applied to a large-scale wind power cluster in northeast China to verify its effectiveness.The experimental results show that the proposed method is 0.24%less RMSE and 0.05%lower compared with the ungridded MAE,which effectively improves the accuracy of day-ahead power prediction of wind power cluster.

wind power predictionconvolution long short-time memory networknetwork predictionspatial correlationcluster division

杨再丞、孙勇

展开 >

现代电力系统仿真控制与绿色电能新技术教育部重点实验室(东北电力大学),吉林 吉林 132012

国网吉林省电力有限公司经济技术研究院,吉林 长春 130022

风电功率预测 卷积长短时记忆网络 网络预测 空间相关性 集群划分

吉林省发改委创新能力建设项目国家电网科学发展计划

2023C033-55108-202218280A-2-313-XG

2024

东北电力大学学报
东北电力大学

东北电力大学学报

影响因子:1.157
ISSN:1005-2992
年,卷(期):2024.44(2)
  • 20