首页|不同海拔毛竹叶绿素的高光谱特征及叶绿素估测模型

不同海拔毛竹叶绿素的高光谱特征及叶绿素估测模型

扫码查看
叶绿素是表征植被生产力的重要指标,毛竹叶绿素快速检测对农林作物高效精准经营具有重要意义.以福建永安上坪乡山地竹林为对研究对象,设置 3 个海拔梯度(低海拔、中海拔、高海拔)采集不同冠层毛竹叶片样本 65 份;每份样品重复测定 3 次高光谱和叶绿素质量分数,分析叶绿素质量分数与光谱特征随海拔梯度变化的关系,筛选对叶绿素质量分数变化影响敏感的光谱特征及光谱指标;应用 5 种参数回归方程和 3 种机器学习算法拟合毛竹叶绿素质量分数估测模型.结果表明:海拔是影响毛竹叶片光谱特征的重要因素,叶绿素质量分数随着海拔梯度上升呈现显著增加趋势,"三边"(蓝边、黄边和红边)参数与叶绿素质量分数的敏感程度不佳,原始光谱和一阶微分光谱与叶绿素质量分数在可见光范围内有多波段相关性显著;原始光谱曲线中,叶绿素敏感波长为683、890 nm,一阶微分光谱曲线中,叶绿素敏感波长为 749 nm.以红边波段叶绿素指数(ICIred)建立的二次函数回归模型的R2 为0.613;随机森林模型(RF)的R2 达0.852,与参数模型精度相比精度提升38.9%,均方根误差下降61.0%,平均相对误差下降 38.6%;ICIred+RF组合模型为毛竹叶片叶绿素质量分数的单变量最佳估算模型.
High-Spectral Characteristics of Chlorophyll in Phyllostachys edulis at Different Altitudes and Chlorophyll Estima-tion Models
Chlorophyll is an important indicator of vegetation productivity,and the rapid detection of chlorophyll in Phyllostachys edulis is of great significance for the efficient and precise management of agricultural and forestry crops.This study focuses on mountainous P.edulis forests in Shangping Township,Yong'an,Fujian Province,and collects 65 samples of P.edulis leaves from different canopy layers at three altitude gradients(low,middle,and high).Each sample's hyperspectral and chlorophyll mass fraction were measured three times,analyzing the relationship between chlorophyll mass fraction and spectral characteristics along the altitude gradient.The study aims to identify the spectral characteristics and indices that are sensitive to changes in chlorophyll mass fraction.Five parametric regression equations and three machine learning algo-rithms were applied to fit the chlorophyll mass fraction estimation model for P.edulis.The results showed that altitude is a significant factor affecting the spectral characteristics of P.edulis leaves,with chlorophyll mass fraction showing a signifi-cant increasing trend with altitude.The sensitivity of the"three edge"(blue-edged,yellow-edged,and red-edged)param-eters to chlorophyll mass fraction was poor,while both the original spectrum and the first derivative spectrum exhibited sig-nificant multi-band correlations with chlorophyll mass fraction in the visible light range.The sensitive wavelengths for chlo-rophyll were found to be 683 nm and 890 nm in the original spectral curve,and 749 nm in the first derivative spectral curve.The quadratic function regression model established using the red-edge chlorophyll index(ICIred)had an R2 of 0.613.The random forest model(RF)achieved an R2 of 0.852,showing a 38.9%improvement in accuracy compared to the parametric models,with a root mean square error reduction of 61.0%and an average relative error reduction of 38.6%.The ICIred+RF combined model is the best single-variable estimation model for the chlorophyll mass fraction of P.edulis leaves.

High-spectralAltitudinal gradientPhyllostachys edulisChlorophyllSpectral indexMachine learning model

孟繁钰、郭孝玉、郑小曼

展开 >

福建农林大学,福州,350002

三明学院

高光谱 海拔梯度 毛竹 叶绿素 光谱指数 机器学习模型

国家自然科学青年基金项目福建省科技计划项目福建省科技计划项目福建省中青年教师教育科研项目三明学院国家基金培育项目

418012792019J018202019N5012JAT220354PYT2307

2024

东北林业大学学报
东北林业大学

东北林业大学学报

CSTPCD北大核心
影响因子:0.74
ISSN:1000-5382
年,卷(期):2024.52(9)
  • 37