首页|以地理模拟与优化系统(GeoSOS)模型进行的升金湖湿地景观模拟与演变预测

以地理模拟与优化系统(GeoSOS)模型进行的升金湖湿地景观模拟与演变预测

扫码查看
以升金湖国际重要湿地为研究区,根据2010-2020年Landsat系列遥感影像,分析该湿地景观变化特征及驱动因素,利用地理模拟与优化系统(GeoSOS)模型对2025年该湿地在不同发展情景(自然情景、耕地保护情景和生态保护情景)进行景观模拟与预测,探究该湿地景观的未来演变趋势,并提出相关规划建议.研究表明:①2010-2020年间,草地面积略微减少,滩涂和水体面积有部分增加,景观结构趋于复杂化,主要受到年降水(自然因素)及GDP(人文因素)的影响;②GeoSOS模型中,人工神经网络-元胞自动机(ANN-CA)算法的模拟精度最高,总体精度达到63.28%,Kappa系数达到0.503,品质因数(FoM)达到0.122,适用于湖泊湿地景观模拟与预测;③根据2025年不同发展情景湿地景观预测结果,采取生态保护策略最能有效保障自然湿地面积,维持湿地景观的多样性与稳定性.
Landscape Simulation and Evolution Prediction of Shengjin Lake Wetland Using Geographic Simulation and Opti-mization System(GeoSOS)Model
Using the Shengjin Lake International Important Wetland as the study area,this research analyzes the wetland land-scape change characteristics and driving factors based on Landsat series remote sensing images from 2010 to 2020.The Ge-ographic Simulation and Optimization System(GeoSOS)model is employed to simulate and predict the wetland landscape in 2025 under different development scenarios(natural scenario,cultivated land protection scenario,and ecological pro-tection scenario),exploring the future evolution trends of the wetland landscape and providing related planning sugges-tions.The study findings indicate:(1)Between 2010 and 2020,the area of grassland slightly decreased,while the area of shoals and water bodies experienced some increase,leading to increased landscape complexity.This change is primarily in-fluenced by annual precipitation(natural factors)and GDP(human factors).(2)In the GeoSOS model,the Artificial Neural Network-Cellular Automata(ANN-CA)algorithm demonstrated the highest simulation accuracy,with an overall accuracy of 63.28%,a Kappa coefficient of 0.503,and a Figure of Merit(FoM)of 0.122,making it suitable for simula-ting and predicting lake wetland landscapes.(3)According to the wetland landscape prediction results for 2025 under dif-ferent development scenarios,implementing ecological protection strategies is the most effective way to safeguard the area of natural wetlands,maintaining the diversity and stability of the wetland landscape.

Wetland landscapeLandscape simulationGeoSOS modelGeographic detectorDevelopment scenario

程倩、王杰、马靖博、王梦茹、周旭

展开 >

安徽大学,合肥,230601

湿地景观 景观模拟 地理模拟与优化系统模型 地理探测器 发展情景

2025

东北林业大学学报
东北林业大学

东北林业大学学报

北大核心
影响因子:0.74
ISSN:1000-5382
年,卷(期):2025.53(1)