首页|基于多级域自适应网络的轴承故障诊断模型

基于多级域自适应网络的轴承故障诊断模型

扫码查看
针对在轴承运行过程中复杂多变的环境可能会导致训练数据和测试数据分布不一致、模型诊断性能下降的问题,提出了一种基于Shuffle-CANet的轴承故障诊断模型。通过改进ShuffleNet V2 并引入非对称卷积,实现了对轴承的跨域故障诊断。根据迁移学习中的领域自适应思想,在模型中加入域损失函数来提取源域和目标域的共有特征,实现跨域故障诊断。与传统的深度学习模型相比,该模型对移动设备和嵌入式设备更加友好。在两个不同的数据集上通过不同迁移任务来验证Shuffle-CANet模型的故障诊断效果。研究结果表明,当源域和目标域数据来源于相同的数据集时,模型的故障诊断准确率可以超过 99%;当源域和目标域数据来源于不同的数据集时,模型的故障诊断率可以超过95%。
Bearing Fault Diagnosis Model Based on Multi-Level Domain Adaption Network
The complex and changeable environment in the process of bearing operation may lead to inconsistent distribution of training data and test data,and decrease the diagnosis performance of the model.Thus a bearing fault diagnosis model based on the Shuffle-CANet is proposed,and realizes bearing cross-domain fault diagnosis by improving the ShuffleNet V2 and introducing asymmetric convolution.A domain loss function is added to the model based on the idea of domain adaptation in transfer learning so that the common features of the source domain and the target domain can be extracted occasionally and the cross-domain fault diagnosis can be realized.Compared with the traditional deep learning model,this model is friendlier to mobile and embedded devices.The Shuffle-CANet is validated by different transfer tasks on two different datasets.The results show that when the source domain and the target domain are derived from the same dataset,the fault diagnostic accuracy of the model can be more than 99%.When the target domain and the source domain are derived from different datasets,the fault diagnostic accuracy of the model can be more than 95%.

bearing fault diagnosisShuffleNet V2multi-level domain adaptionlightweight

李文文、陈广锋

展开 >

东华大学 机械工程学院,上海 201620

轴承故障诊断 ShuffleNet V2 多级域自适应 轻量化

2024

东华大学学报(英文版)
东华大学

东华大学学报(英文版)

影响因子:0.091
ISSN:1672-5220
年,卷(期):2024.41(2)
  • 21