首页|基于支持向量机算法的谐波减速器声学共振快速检测方法

基于支持向量机算法的谐波减速器声学共振快速检测方法

扫码查看
谐波减速器的装配误差异常质量检测是制造商交货前的重要流程。该检测重点关注异常评估,可以减少因产品召回而造成的经济损失,进一步保护用户的利益和制造商的声誉。声音信号为声学共振测试提供了简单非接触式测量的基础,并且有助于工厂在谐波减速器交货前进行快速测试。该文提出了一种声音数据采集、特征提取和分析的试验方法。利用谐波减速器的锤击激励,获得了异常和正常谐波减速器的声学数据集。提取了声音信号的时域和频域特征,比较了支持向量机(support vector machine,SVM)、随机森林(random forest,RF)、K-means这三种分类算法。结果表明,SVM在测试集上的准确率为98。0%,RF的准确率为95。0%,K-means的准确率仅为53。0%。SVM分类器的准确率、召回率和F1分数都很高。基于SVM谐波减速器质量检测模型,利用NI数据采集卡和Labview软件,设计了谐波减速器快速检测软件,可用于厂家谐波减速器出厂前检测。
Acoustic Resonance Fast Detection Method of Harmonic Reducer Based on Support Vector Machine Algorithm
Assembly error abnormal quality testing of harmonic reducers is an important part of the pre-delivery process of manufacturers and focuses on abnormality assessment,which can reduce financial losses due to product recalls and further protect the interests of users and the reputation of manufacturers.Sound signals offer the benefit of simple and non-contact measurements for acoustic resonance testing and can facilitate pre-delivery fast factory testing of harmonic reducers.This paper presents an experimental method for sound data acquisition,feature extraction and analysis.Hammered excitation of a harmonic reducer is used to obtain acoustic datasets for both abnormal and normal harmonic reducers.Time and frequency domain features of the sound signals are extracted,and the classification algorithms of support vector machine(SVM),random forest(RF)and K-means are compared.The results show that the accuracy of SVM on the test set is 98.0%,that of RF is 95.0%,and that of K-means is only 53.0%.The SVM classifier's accuracy,recall,and F1 scores are high.Based on the SVM harmonic reducer quality detection model,the national instrument(NI)data acquisition card and Labview are used to design the harmonic reducer fast detection software for the harmonic reducer pre-delivery inspection of manufacturers.

harmonic reduceracoustic resonance testingfeature extractionclassification analysissupport vector machine(SVM)algorithm

ENKHBAT Ganbayar、徐洋、张熠鑫、解国升

展开 >

东华大学机械工程学院,上海 201620

谐波减速器 声振测试 特征提取 分类分析 支持向量机

2024

东华大学学报(英文版)
东华大学

东华大学学报(英文版)

影响因子:0.091
ISSN:1672-5220
年,卷(期):2024.41(3)