A Compact Millimeter Wave Antenna Array with Defected Ground Structure for 5G Applications
The transition towards the fifth generation(5G)of communication systems has been fueled by the need for compact,high-speed and wide-bandwidth systems.These advancements necessitate the development of novel and highly efficient antenna designs characterized by the compact size.In this paper,a novel antenna design with a hexagonal-shaped resonating element and two U-shaped open-ended stubs is presented.Millimeter-wave(mmWave)frequency range suffers from attenuation due to atmosphere and path loss because of higher frequencies.To address these issues,the deployment of a high-gain antenna is imperative.This design is created through an evolutionary process to work best in the mmWave frequency range with a high gain.A thin Rogers RT5880 substrate with a thickness of 0.254 mm,a dielectric constant of 2.3 and a loss tangent of 0.000 9 supports the copper-based radiating element.A partial ground plane with a square slot and trimmed corners at the bottom enhances the antenna's bandwidth.The single-element antenna exhibits a wide bandwidth of nearly 6 GHz and a gain of 4.58 dBi.By employing the proposed antenna array,the antenna gain is significantly enhanced to 14.90 dBi while maintaining an ultra-compact size of 24 mm x 46 mm at the resonant frequency of 31 GHz.The antenna demonstrates a wider impedance bandwidth of 15.73%(28-34 GHz)and an efficiency of 94%.The proposed design works well for 5G communication and satellite communication,because it has a simple planar structure and focused dual-beam radiation patterns from a simple feeding network.
dual beamultra-compact antenna arraymillimeter wave(mmWave)5Ghigh gain