首页|基于BP-DCKF-LSTM的锂离子电池SOC估计

基于BP-DCKF-LSTM的锂离子电池SOC估计

扫码查看
电池荷电状态(SOC)的准确估计是电池管理系统(BMS)的核心功能之一.为了提高锂电池SOC估算精度,提出了一种将反向传播神经网络(BP)、双容积卡尔曼滤波(DCKF)和长短期记忆神经网络(LSTM)相结合的SOC估计方法.针对多温度条件下传统多项式拟合法在拟合开路电压(OCV)与SOC时效果较差的问题,提出了一种基于BP神经网络的拟合方法,通过验证表明该方法能有效提高拟合精度.针对单独使用模型法或数据驱动法估计SOC各自存在的优缺点,提出了一种将DCKF与LSTM相结合的估计方法,在提高估计精度的同时,可以减少参数调节时间和训练成本.实验验证表明,BP-DCKF-LSTM算法的均方根误差(RMSE)和平均绝对误差(MAE)分别小于0.5%和0.4%,具有较高的SOC估算精度和鲁棒性.
Lithium ion battery SOC estimation based on BP-DCKF-LSTM
Accurate estimation of state of charge(SOC)is critical for battery management systems(BMS).This paper introduces an SOC estimation method integrating backpropagation neural net-work(BP),dual cubature Kalman filter(DCKF),and long short-term memory neural network(LSTM)to enhance lithium battery SOC precision.Addressing the inadequacies of conventional poly-nomial fitting method in accurately fitting open-circuit voltage(OCV)to SOC under varied tempera-tures,a BP neural network-based approach is proposed,proven to significantly improve fitting accu-racy.Moreover,considering the strengths and weaknesses of solely using model-based or data-driven methods for SOC estimation,a combined approach of DCKF and LSTM is suggested.This not only boosts estimation accuracy but also reduces parameter tuning time and training costs.Experimental validation indicates that the BP-DCKF-LSTM algorithm achieves root mean square Error(RMSE)and mean absolute error(MAE)of less than 0.5%and 0.4%,respectively,demonstrating high accu-racy and robustness in SOC estimation.

state of chargebackpropagation neural networkdual cubature Kalman filterlong short-term memory neural network

张宇、李维嘉、吴铁洲

展开 >

湖北工业大学太阳能高效利用及储能运行控制湖北省重点实验室,湖北武汉 430068

荷电状态 反向传播神经网络 双容积卡尔曼滤波 长短期记忆神经网络

2025

电源技术
中国电子科技集团第十八研究所

电源技术

北大核心
影响因子:0.329
ISSN:1002-087X
年,卷(期):2025.49(1)