首页|面向真实世界车辆LFP电池的深度学习SOC估计方法

面向真实世界车辆LFP电池的深度学习SOC估计方法

扫码查看
电动汽车磷酸铁锂(LFP)电池的开路电压-荷电状态曲线在20%~95%荷电状态(SOC)范围内存在平台期,导致基于模型的方法难以准确估计SOC,而基于数据驱动的方法又存在真实世界准确的样本数据难以获取和实验环境无法完全模拟真实世界电池系统运行的问题.提出了一种面向真实世界车辆LFP电池的深度学习SOC估计方法,利用真实世界车辆LFP电池系统运行数据通过反向安时积分法为其自动标签准确的SOC,构建了 CNNGRUM新模型预测SOC的方法,通过多层卷积神经网络结合多层门控循环单元,基于电流、电压、温度和充电过程安时量四个特征实现对LFP电池SOC的估计.通过在真实世界的20辆电动汽车LFP电池上进行模型训练和验证,实现了最大绝对误差为2.85%、均方根误差(RMSE)为0.61%、平均绝对误差(MAE)为0.42%的SOC准确估计.
Deep learning-based state of charge estimation method for real-world vehicles with LFP batteries
Electric vehicles equipped with lithium iron phosphate(LFP)batteries exhibit a flat period in the state of charge(SOC)versus open-circuit voltage curve within the SOC range of 20%to 95%.This makes it challenging to accurately estimate SOC using model-based methods.Data-driven ap-proaches face difficulties in obtaining accurate sample data from the real world and simulating real-world battery system operation in experimental environments.To address this,this paper proposes a deep learning-based SOC estimation method specifically designed for LFP batteries in real-world ve-hicle applications.The method utilizes operational data from real-world LFP battery systems in ve-hicles to accurately label SOC using a reverse ampere-hour integration technique.It introduces a novel CNNGRUM(Convolutional Neural Network-Gated Recurrent Unit)model to predict SOC,combining multiple layers of convolutional neural networks with multiple layers of gated recurrent units.The model leverages four features:current,voltage,temperature,and charge/discharge process ampere-hour integral to estimate SOC for LFP batteries.The proposed method was trained and vali-dated on 20 electric vehicles equipped with LFP batteries in real-world conditions,achieving SOC es-timation with a maximum absolute error of 2.85%,root mean square error(RMSE)of 0.61%,and mean absolute error(MAE)of 0.42%.

lithium iron phosphate batterySOC estimationdeep learningelectric vehicle

孟易真、杨林、周正益、李怀瑾、吕丰、刘志胜、李旸、吴炜坤

展开 >

上海交通大学机械与动力工程学院,上海 200240

上海启源芯动力科技有限公司,上海 200001

磷酸铁锂电池 SOC估计 深度学习 电动汽车

2025

电源技术
中国电子科技集团第十八研究所

电源技术

北大核心
影响因子:0.329
ISSN:1002-087X
年,卷(期):2025.49(1)