首页|基于神经网络法的脆性指数预测——以B区部分井为例

基于神经网络法的脆性指数预测——以B区部分井为例

扫码查看
A井区长 62 主要发育致密砂岩,脆性指数对于储层进行压裂以及施工改造效果有直接的关系,如何准确高效的建立脆性指数模型是油田储层改造进行压裂亟待解决的问题.传统的实验矿物分析法建立模型需要大量的实验数据,普通的测井参数预测法准确性较低.因此本文通过选取各测井曲线参数与脆性指数做线性回归,选取相关系数较高的测井参数作为建模的输入层的原始数据,通过灰色关联法对其进行原始数据进行权重系数计算,按照其权重系数与测井原始数据的加权平均的乘积作为神经网络的最终输入层参数,通过建模可以得出该方法对于脆性指数预测精度明显优于较弹性参数法,其预测精度达到 90.24%,其对于该区块目标储层改造的后续开发压裂需求.
Prediction of brittleness index based on neural network method——taking part of wells in Area A of x oilfield as an example
The tight sandstone is mainly developed in Chang 62 of Well A,and the brittleness index is directly related to the effect of fracturing and construction,how to establish the brittle index model accurately and efficiently is an urgent problem to be solved in fracturing of oilfield reservoir reconstruction.The traditional experimental mineral analysis method needs a lot of experimental data to establish the model,and the common logging parameter prediction method has a low accuracy.Therefore,this paper chooses the log parameters with high correlation coefficient as the original data of the input layer of the modeling through the linear regression between each logging curve parameter and the brittle index,the weight coefficient of the original data is calculated by the gray correlation method,and the final input layer parameter of the neural network is taken as the prod-uct of the weight coefficient and the weighted average of the original data,the prediction accuracy of the method is 90.24%,which is better than that of the elastic parameter method.It is necessary for the subsequent development and fracturing of the target reservoir in this block.

neural networkbrittle Index predictionlog interpretation

王超、梁旺东、王子龙

展开 >

中国建筑材料工业地质勘查中心宁夏总队,宁夏银川 750021

延长油田股份有限公司勘探开发技术研究中心,陕西延安 716000

神经网络 脆性指数预测 测井解释

国家科技重大专项

2016ZX05056

2024

地下水
陕西省水工程勘察规划研究院 全国地下水信息网 陕西省水利学会

地下水

影响因子:0.219
ISSN:1004-1184
年,卷(期):2024.46(2)
  • 21