首页|改进DeepLabV3+遥感高分影像地面道路提取方法

改进DeepLabV3+遥感高分影像地面道路提取方法

扫码查看
针对当前图像分割算法在实施遥感影像道路提取时准确率较低,断裂情况较为严重的问题,基于DeepLabV3+模型提出一种适用于遥感影像道路提取的模型R-DeepLabV3+.在编码器的特征提取网络部分,使用焦点下采样层代替标准卷积核,对输入特征图进行无特征损失尺寸压缩,同时引入密集连接机制代替残差连接,丰富深层次特征图内细节特征含量;在编码器尾部,使用带有深度可分离卷积的快速特征金字塔池化-跨阶局部网络,实施多感受野特征图的融合;在解码器部分,引入坐标注意力机制,计算道路于背景的特征权重,提高模型学习效率.实验结果表明,利用该方法提取出的道路结构完整,在平均交并比与精确率指数上有显著优势,能够基于遥感影像,实施高精度的道路提取.
Using Improved DeepLabV3+to Extract Ground Road from Remote Sensing High-Resolution Image
In view of the problems that the current image segmentation algorithm has low accuracy and serious fractures when implementing road extraction from remote sensing images,a model R-DeepLabV3+is proposed based on the DeepLabV3+model and is suitable for remote sensing road extraction.In the feature extraction network part of the encoder,the focus down sampling layer is used instead of the standard convolution kernel to compress the in-put feature map without feature loss.At the same time,a dense connection mechanism is introduced to replace the residual connection to enrich the detailed feature content in the deep feature map.At the end of the encoder,a fast feature pyramid pooling-cross-order local network with depth-separable convolution is used to implement the fusion of multi-receptive field feature map.In the decoder part,a coordinate attention mechanism is introduced to calculate the distance between the road and the background Feature weights to improve model learning efficiency.Experimental results show that this method has significant advantages in extracting a complete road structure,Mean Intersection over Union(MIoU)and Accuracy(Acc),and can implement high-precision road extraction based on remote sensing images.

remote sensing imagesroad extractiondense connectionDW-SPPFCSPCcoordinate

谢文、朱舒文

展开 >

湖南省水文地质环境地质调查监测所,湖南 长沙 410100

遥感影像 道路提取 密集连接 DW-SPPFCSPC 坐标

湖南省地质院科研项目

HNGSTP202314

2024

地矿测绘
云南省地矿测绘院

地矿测绘

影响因子:0.421
ISSN:1007-9394
年,卷(期):2024.40(2)