首页|一种结合RFCABAM与YOLOv7的无人机遥感影像检测方法

一种结合RFCABAM与YOLOv7的无人机遥感影像检测方法

扫码查看
针对无人机遥感影像内目标受尺寸小、背景复杂等因素影响,导致检测正确率较低、漏检率较高的问题,介绍了一种改进YOLOv7模型的检测方法.在骨干网络中,引入RFCABAM模块代替现有卷积核组,通过计算目标的通道及空间层面语义特征,让模型更专注学习目标样本特征;在特征融合网络中,引入跨层、跨尺度连接路径,并采用加权融合机制,突出目标细节特征在图内的重要性;在检测端,引入更大尺度的检测头来检测小尺寸目标,同时通过EIoU-自适应非极大值抑制算法筛选候选框,提高模型对密集目标的灵敏度.实验结果表明,所用改进策略都能提升模型检测精度,在可见光与热红外影响数据集上,改进模型检测精度优于对照组内其余模型,测试环境下改进模型的检测速度也能达到实时水准.
A Detection Method of UAV Remote Sensing Image Combining RFCABAM and YOLOv7
In view of the low detection accuracy and high missed detection rate caused by factors such as small size and complex background in UAV remote sensing images,a detection method based on an improved YOLOv7 model is proposed.In the backbone network,the RFCABAM module is introduced to replace the existing convolu-tional kernel group,and by calculating the semantic features of the target at the channel and spatial levels,the model can focus more on learning the target sample features.In the feature fusion network,cross-layer and cross-scale con-nection paths are introduced,and a weighted fusion mechanism is adopted to highlight the importance of target detail features in the image.At the detection end,a larger-scale detection head is introduced to detect small-sized targets,and candidate boxes are screened using the EIoU-Adaptive-NMS algorithm to improve the model's sensitivity to dense targets.Experimental results show that all three sets of improvement strategies used can improve the detection accuracy of the model.On visible light and thermal infrared influence datasets,the improved model detection accura-cy is superior to other models in the control group,and the detection speed of improved model under test environ-ment can also reach real-time level.

UAV remote sensingtarget detectionRFCABAMfeature weighted fusionEIoU-Adaptive-NMS

邱胜强

展开 >

河南省地质局矿产资源勘查中心,河南 郑州 450006

无人机遥感 目标检测 RFCABAM 特征加权融合 自适应非极大值抑制

2024

地矿测绘
云南省地矿测绘院

地矿测绘

影响因子:0.421
ISSN:1007-9394
年,卷(期):2024.40(3)
  • 10