首页|基于Faster R-CNN和Mask R-CNN的滑坡自动识别研究

基于Faster R-CNN和Mask R-CNN的滑坡自动识别研究

扫码查看
基于高分一号影像,以三峡库区库首段为例,通过目视解译出160个滑坡样本,按照9∶1比例分为训练样本和验证样本,分别利用Faster R-CNN和Mask R-CNN算法构建滑坡自动识别模型.为进一步对比分析不同样本比例下两种模型的性能,分别采用8∶2、7∶3、6∶4的样本比例进行计算.研究结果表明,Mask R-CNN模型识别结果准确率、召回率和F1分数等3项指标均优于Faster R-CNN;且经过交叉验证,证明Mask R-CNN模型的性能更为稳定.
Research on Automatic Landslide Identification Based on Faster R-CNN and Mask R-CNN
Based on the images from Gaofen-1 satellite,taking the first section of the Three Gorges reservoir as an example,160 landslide samples are visually interpreted and divided into training and validation samples according to the ratio of 9∶1.Then,landslide automatic identification models are constructed using Mask R-CNN and Faster R-CNN algorithms.To further compare and analyze the performance of the two models under different sample ratios,calculations are performed using sample ratios of 8∶2,7∶3,and 6∶4.The results show that the recognition results based on Mask R-CNN model are better than Faster R-CNN in three indicators,including precision,recall and Fl score.Mo-reover,cross-validation proves that the performance of Mask R-CNN model is more stable.

deep learninglandslide identificationMask R-CNNFaster R-CNNcross-validation

于宪煜、杨森

展开 >

湖北工业大学土木建筑与环境学院,武汉市南李路28号,430068

深度学习 滑坡识别 Mask R-CNN Faster R-CNN 交叉验证

2025

大地测量与地球动力学
中国地震局地震研究所 地壳运动监测工程研究中心等

大地测量与地球动力学

北大核心
影响因子:0.589
ISSN:1671-5942
年,卷(期):2025.45(1)