首页|样本熵改进EEMD算法在继电器参数异常值处理中的应用

样本熵改进EEMD算法在继电器参数异常值处理中的应用

扫码查看
针对继电器参数中存在的异常值问题,文章提出了一种模态异常值处理模型.首先,依据继电器特点对集合经验模态分解(EEMD)算法中的参数进行灵敏性分析,确定优化参数;其次,针对EEMD分解中存在的模态混叠现象,采用样本熵和哈里斯鹰优化算法得到有效的模态分量;最后,分别采用拉依达准则及三次样条插值法对各模态异常数据进行识别及替换,将处理后的所有分量进行重构异常值,得到处理后的数据序列.继电器接触压降参数的实例分析结果表明,该模型具有良好的泛化能力,且能够有效地识别出潜在异常值.
Application of sample entropy improved EEMD algorithm in relay parameter outlier processing
A modal outlier processing model is proposed for the problem of outliers existing in relay parameters.Firstly,the parameters in the ensemble empirical mode decomposition(EEMD)algorithm are analyzed for sensitivity based on the characteristics of the relay,and the optimization parameters are determined.Secondly,aiming at the modal aliasing phenomenon in EEMD decomposition,the sample entropy and Harris Hawks optimization are used to obtain effective modal components.Finally,the pauta criterion and cubic spline interpolation method are respectively used to identify and replace the abnormal data in each modal.All the processed components are reconstructed with outliers,and the processed data series are obtained.The case analysis results of the relay contact voltage drop parameter show that the model has good generalization ability and can effectively identify potential outliers.

ensemble empirical mode decomposition(EEMD)sample entropymodal aliasingcubic spline interpolationrelay parameter

彭威、孙鑫亮、李文华

展开 >

广州地铁集团有限公司,广东 广州 510010

河北工业大学 电气工程学院,天津 300130

集合经验模态分解(EEMD) 样本熵 模态混叠 三次样条插值 继电器参数

2025

电力机车与城轨车辆
中国南车集团株洲电力机车厂

电力机车与城轨车辆

影响因子:0.259
ISSN:1672-1187
年,卷(期):2025.48(1)