首页|基于量子长短期记忆网络的光伏功率预测模型

基于量子长短期记忆网络的光伏功率预测模型

扫码查看
随着新能源发电系统的快速发展,准确的光伏功率预测对提高电网消纳光电能力有重要作用.针对现有方法存在精度不足的问题,提出了一种参数更加轻量、训练更加稳定、效果更好的量子长短期记忆网络光伏功率预测模型.首先基于奇异谱分析进行数据分解,然后构建量子长短期记忆网络捕捉数据高维特征;最后,通过双重注意力机制捕捉特征维度和时间维度上的重要信息,最终在决策层输出结果.算例分析表明,与传统方法相比,所提方法可以有效提升光伏功率预测精度.真机实验验证了利用量子计算机进行光伏功率预测的可行性和有效性.随着量子计算机的发展,未来有望应用量子计算机实现海量光伏电站发电功率的快速精准预测,助力电网安全调度和可靠运行.
Photovoltaic-Power Prediction Model Based on Quantum Long Short-Term Memory Network
Owing to the rapid development of new energy-generation systems,accurate photovoltaic(PV)-power forecasting is crucial in enhancing the grid's ability to integrate solar energy.To address the insufficient accuracy of existing methods,this study proposes a quantum long short-term memory(LSTM)network PV-power forecasting model that is more lightweight in terms of parameters,more stable in training,and yields better results.First,data decomposition is performed based on a singular spectrum analysis.Subsequently,a quantum LSTM network is constructed to capture high-dimensional data features,followed by the utilization of dual attention mechanisms to capture features and temporal importance,which culminates in results output via a decision layer.Case studies show that compared with conventional methods,quantum PV-power forecasting can effectively improve the accuracy of such forecasts.Furthermore,empirical validation underscores the feasibility and effectiveness of utilizing quantum computers for PV-power forecasting.As quantum computers continue to develop,there is hope for the future application of these systems to achieve rapid and precise forecasting of power generation from large-scale photovoltaic(PV)power stations,This would assist in the safe scheduling and reliable operation of the power grid.

quantum computerquantum long short-term memory networkdual-stage attentionphotovoltaic power prediction

潘东、杨欣、施天成、方圆、王绪利、窦猛汉

展开 >

国网安徽省电力有限公司经济技术研究院,合肥市 230022

本源量子计算科技(合肥)股份有限公司,合肥市 231283

量子计算机 量子长短期记忆网络 双重注意力 光伏功率预测

2025

电力建设
国网北京经济研究院,中国电力工程顾问集团公司,中国电力科学研究院

电力建设

北大核心
影响因子:0.99
ISSN:1000-7229
年,卷(期):2025.46(1)