首页|基于隐式光照的自动驾驶多模态全天候感知

基于隐式光照的自动驾驶多模态全天候感知

扫码查看
准确高效的感知是保障自动驾驶安全性的关键.然而在夜间等低光照场景以及雨雪沙雾等极端天气下,视觉或激光雷达等感知方案的误判率可能显著增高.因此,本文结合可见光图像的细节优势与红外热成像的高穿透力探测优势,研究自动驾驶场景的全天候实时感知方法.针对可见光-红外传感数据之间的时空错位和模态不平衡问题,首先设计一种多模态注意力机制进行局部到非局部的特征融合,修正空间位置偏差并捕捉语义互补信息,实现高效多模态融合.然后,采用基于Retinex理论隐式估计像素级光照权重并进一步引导注意力计算,在多级特征图中平衡可见光及红外特征.相较于既往研究,本文方法在感知性能和效率方面均取得较大改进,可为保障车辆行驶安全提供技术支撑.
Implicit Illumination-Based Multimodal All-Weather Perception for Autonomous Driving
Accurate and real-time perception is crucial for ensuring the safety of autonomous driving.However,in low-light conditions such as nighttime,and extreme weather conditions like rain,snow,sandstorms,and fog,perception systems based on vision or LiDAR may experience significantly increased error rates.Therefore,this paper investigates an all-weather real-time perception method for autonomous driving by combining the advantage of visible imagery in capturing detailed information with the high penetrative detection capability of infrared thermal imaging.To address the spatiotemporal misalignment and modality imbalance between visible and infrared sensor data,this paper first proposes a cross-modality attention mechanism to perform local-to-nonlocal feature fusion,thereby correcting spatial positional deviations and capturing semantically complementary information for efficient multimodal fusion.Subsequently,pixel-level illumination weights,implicitly estimated based on Retinex theory,are employed to further guide the attention mechanism,balancing visible and infrared features across multi-level feature maps.Compared to previous studies,the proposed method achieves significant improvements in both perception performance and efficiency,providing robust technical support for enhancing vehicle safety.

traffic safetyobject detectiontransformernetworkillumination estimationmultimodal fusion

熊仲夏、王朋成、么子瀛、刘璇、赵文瑶、吴新开

展开 >

北京航空航天大学交通科学与工程学院,北京 100191

北京航空航天大学网络空间安全学院,北京 100191

香港中文大学电子工程系,香港 999077

交通安全 目标检测 视觉自注意力网络 光照估计 多模态融合

2025

交通工程
北京交通工程学会

交通工程

ISSN:2096-3432
年,卷(期):2025.25(1)