首页|基于Sentinel-2影像东北秋季典型湖泊大气校正方法适用性评价

基于Sentinel-2影像东北秋季典型湖泊大气校正方法适用性评价

扫码查看
本文利用 6S(Second Simulation of a Satellite Signal in the Solar Spectrum)、Acolite DSF(Dark spectrum fit-ting)、C2RCC(Case 2 Regional Coast Color)、SeaDas(SeaWiFS Data Analysis System)、Sen2Cor(Sentinel 2 Correc-tion)、Polymer(Polynomial based algorithm applied to MERIS)和 iCOR(Image correction for atmospheric effects)7种大气校正算法,结合松花湖、月亮泡、小兴凯湖实测遥感反射率数据对"哨兵-2号"(Sentinel-2)数据进行大气校正研究,验证算法性能.整体校正结果显示,相较于实测遥感反射率,上述7种大气校正算法均在可见光波段(400~800 nm)呈现不同程度的低估.除C2RCC算法外,其余6种算法校正后的遥感反射率与实测光谱曲线变化趋势基本吻合,其中Sen2Cor算法与iCOR算法性能最佳,Polymer算法性能最差;在单波段校正精度对比中,Sen2Cor和iCOR算法几乎所有波段的均方根误差和平均绝对百分比误差都低于其余5种算法.Sen2Cor算法在560 nm、665 nm和705 nm处校正精度优于其余6种算法,iCOR算法在443 nm和740 nm处有良好的表现,在490 nm处6S算法校正精度最高,拥有最低的均方根误差(0.0059 sr-1)和平均绝对百分比误差(21.40%).结果表明,这7种大气校正算法均可以在一定程度上去除大气影响,增加影像的可用性,Sen2Cor算法和iCOR算法更适用于本文所研究水体或相似水体.
Evaluation of atmospheric correction processors for Sentinel-2 imagery for typical lakes in Northeast China in autumn
Quantitative inversion of lake water quality parameters is the most widely used field of lake remote sensing,and the atmospheric correction is one of the key steps to determine the inversion accuracy.In this study,seven atmospheric correction processors,e.g.,6S,Acolite DSF,C2RCC,SeaDas,Sen2Cor,Polymer and iCOR,were used to validate the performances of processors with in situ Remote Sensing Reflectance in the Songhua Lake,the Yueliangpao Lake and the Xiaoxingkai Lake,respectively.From the overall comparison results,these seven atmospheric correction processors had low estimation results comparing with in situ reflect-ance measurement in visible bands(400-800 nm).Of which,the Sen2Cor and iCOR processors has the best performance,and the Polymer processors has the worst performance,considering the accuracy.All processors performed well and showed a similar tendency with in situ reflectance considering MSI bands,excepted for C2RCC.For the validation performance of single bands,the root mean square error and mean absolute percent-age error of Sen2Cor and iCOR processors are lower than the other five processors in almost all bands.Sen2Cor processor worked best at 560 nm,665 nm and 705 nm,and iCOR processor performed is better than other algorithms at 443 nm and 740 nm,6S processor has the highest calibration accuracy at 490 nm,with the lowest root mean square error(0.0059 sr-1)and average absolute percentage error(21.40%).Further,our study on the validation of seven atmospheric correction processors indicated that they can remove atmospheric influ-ence and increase the availability of imagery,as well as the Sen2Cor and iCOR preformed best and was more appropriate for studied lakes or lakes with similar aquatic environments.

atmospheric correctionSentinel-2 satelliteinland lakeremote sensing reflectance

李勇、李思佳、宋开山、徐茂林、刘阁

展开 >

辽宁科技大学土木工程学院,辽宁鞍山 114000

中国科学院东北地理与农业生态研究所,吉林长春 130102

大气校正 Sentinel-2卫星 内陆湖泊水体 遥感反射率

国家自然科学基金国家自然科学基金国家自然科学基金市院科技创新合作专项国家民用空间基础设施陆地观测卫星共性应用支撑平台吉林省与中国科学院科技合作高技术产业化专项资金项目

U23A2008422014144217137421SH102017-000052-73-01-0017352021SYHZ0002

2024

地理科学
中国科学院 东北地理与农业生态研究所

地理科学

CSTPCDCSSCICHSSCD北大核心
影响因子:3.117
ISSN:1000-0690
年,卷(期):2024.44(1)
  • 34