首页|基于递归特征消除-随机森林模型的江浙沪农田土壤肥力属性制图

基于递归特征消除-随机森林模型的江浙沪农田土壤肥力属性制图

扫码查看
以江苏省、浙江省、上海市农田为研究区,选用气候、地形、植被、土壤属性等自然环境协变量,及农业机械总动力、每公顷农用化肥施用量、农业总产值、农村用电量等农业活动变量,利用递归特征消除方法(RFE)对环境协变量进行筛选,基于筛选后的最优变量组合建立随机森林(RF)模型,进行表层土壤pH、有机碳、全氮、全磷、全钾、铵态氮、硝态氮、有效磷、速效钾、交换性钙、交换性镁11种主要土壤肥力属性的空间分布预测,并采用100次重复的十折交叉验证法进行验证.结果表明:①11个模型筛选出的环境协变量类型主要集中在气候、地形与植被变量,表征人类农业活动的变量在有机碳、全磷、全钾、铵态氮和有效磷预测中体现重要作用.②11个模型的决定系数(R2)在0.27~0.53,pH、速效钾、交换性镁和交换性钙的预测模型决定系数(R2)均在0.45以上.本研究表明人类活动变量对于土壤肥力预测具有重要意义,而递归特征消除-随机森林模型(RFE-RF)可以用于农田主要土壤肥力属性制图,为农业生产提供准确的土壤肥力属性空间分布信息.
Digital mapping of soil fertility attributes in croplands in Jiangsu,Zhejiang and Shanghai based on recursive feature elimination-random forest model
Obtaining quantitatively characterized spatial information of soil fertility is of great significance for improving soil quality,precision agricultural management and sustainable agricultural development.In this study,we selected croplands in Jiangsu Province,Zhejiang Province and Shanghai as the research areas,cli-mate,topography,vegetation and soil properties were selected as natural environment variables.The total power of agricultural machinery,the amount of agricultural chemical electricity consumption is used as agricul-tural activity variables,combining the above two types of environmental covariates are used as environmental covariates.The original environmental covariates were screened by the recursive feature elimination(RFE)method,and the optimal variables combination after screening was used as the independent variable to estab-lish the spatial distribution prediction model based on random forest(RF)of surface soil pH,organic carbon,total nitrogen,total phosphorus,total potassium and nitrogen,nitrate nitrogen,ammonium nitrogen,available phosphorus,available potassium,exchangeable calcium and exchangeable magnesium in the study area.The importance of environmental covariates was ranked and digital soil mapping was performed,validated with 100 replicates of ten-fold cross-validation.The results show that:1)The types of environmental covariates screened out by the 11 models mainly focus on climate,topography and vegetation variables,while the variables repres-enting human agricultural activities play an important role in the prediction of organic carbon,total phosphorus,total potassium,ammonium nitrogen and available phosphorus.2)The coefficients of determination(R2)of the 11 models were between 0.27 and 0.53,and the coefficients of determination(R2)of the prediction models for pH,available potassium,exchangeable magnesium and exchangeable calcium were all above 0.45.The recurs-ive feature elimination-random forest model(RFE-RF)proposed in this article can be used to map the main soil fertility attributes in croplands and provide the necessary basis for the spatial distribution of soil fertility attrib-utes for agricultural production.

recursive feature eliminationRandom Forestsoil fertility attributescroplandsdigital soil map-pingJiangsu,Zhejiang and Shanghai

李安琪、杨琳、蔡言颜、张磊、黄海莉、吴琪、王雯琪

展开 >

南京大学地理与海洋科学学院,江苏南京 210023

递归特征消除 随机森林 土壤肥力属性 农田土壤 数字土壤制图 江浙沪

国家自然科学基金中央高校基本科研业务费

41971054020914380079

2024

地理科学
中国科学院 东北地理与农业生态研究所

地理科学

CSTPCDCSSCICHSSCD北大核心
影响因子:3.117
ISSN:1000-0690
年,卷(期):2024.44(1)
  • 1
  • 53