首页|基于Google Earth Engine的前郭县春季农田覆膜提取

基于Google Earth Engine的前郭县春季农田覆膜提取

扫码查看
本文基于Google Earth Engine(GEE)云平台,综合考虑光学影像的波段反射率、光谱指数特征和雷达影像的极化、纹理特征,分别构建仅使用光学特征、仅使用雷达特征以及光学和雷达特征组合3种特征输入组合;根据精度确定最佳输入特征后,分别结合机器学习中的分类与回归树、支持向量机、最小距离分类法、梯度提升树和随机森林5种方法建立覆膜提取模型,依据结果精度评估不同方法的性能,并基于最优化模型提取出最终的覆膜农田面积.结果表明:①最佳输入特征为波段反射率特征+光谱指数特征+极化特征+纹理特征;②采用随机森林方法建立的模型精度最高,研究区Ⅰ的总体精度达到了 95.84%,Kappa系数为0.95,地物错分率为1.2%,明显优于其他4种方法(地物错分率较分类与回归树、支持向量机、最小距离和梯度提升树法降低0.8%、7.3%、38.0%和0.3%),研究区Ⅱ的验证精度达到了 87.84%,证明该模型在覆膜提取中可以取得更加准确的结果;③使用本文方法得到2022年研究区Ⅰ覆膜农田面积为1 302.48 km2,估算地膜使用量约为7585.62 t.本文综合考虑光学和雷达影像在地物识别中的特点建立模型,可以准确、高效的识别农田地膜,掌握地膜面积,对环境治理与防治具有重要意义.
Extraction of spring farmland plastic mulching in Qianguo County based on Google Earth Engine
Based on the Google Earth Engine(GEE)cloud platform,this paper comprehensively considers the band reflectivity and spectral index characteristics of optical images and the polarization and texture character-istics of radar images,and constructs three feature input combinations:Using only optical features,only radar features,and a combination of optical and radar features.After determining the best input features based on ac-curacy,this paper combines five machine learning methods,namely classification and regression tree,support vector machine,minimum distance,gradient boosting decision tree,and random forest,to establish a plastic mulching extraction model.The performance of different methods is evaluated based on the accuracy of the.results,and the final plastic mulching area is extracted based on the optimization model.The results show that:1)The combined optical and radar image characteristics have the highest accuracy in extracting plastic mulch-ing coverage,and the optimal input features are band reflectivity features+spectral index features+polariza-tion features+texture features;2)The model established using the random forest method has the highest accur-acy.The overall accuracy of study area I reached 95.84%,the Kappa coefficient was 0.95,and the ground ob-ject misclassification rate was 1.2%,which was significantly better than the other four methods(the ground ob-ject misclassification rate was 0.8%,7.3%,38.0%and 0.3%lower than that of classification and regression tree,support vector machine,minimum distance and gradient boosting decision tree method),and the verifica-tion accuracy of study area Ⅱ reached 87.84%,proving that the model can obtain more accurate results in plastic mulching extraction;3)Using the method in this paper,the area of plastic mulching farmland in study area Ⅰ in 2022 is 1302.48 km2,and the estimated amount of film used is about 7585.62 tons.This article com-prehensively considers the characteristics of optical and radar images in ground object recognition to establish a model,which can accurately and efficiently identify farmland mulching and grasp the area of mulch,which is of great significance for environmental management and prevention.

plastic mulchingGoogle Earth Enginefeature extractionrandom forestsupport vector ma-chineclassification and regression treeminimum distancegradient boosting decision tree

邓韵谣、李晓洁、任建华

展开 >

哈尔滨师范大学地理科学学院,黑龙江哈尔滨 150025

中国科学院东北地理与农业生态研究所,吉林长春 130102

覆膜 Google Earth Engine 特征提取 随机森林 支持向量机 分类与回归树 最小距离 梯度提升树

国家重点研发计划项目吉林省自然科学基金项目

2021YFD1500105YDZJ202201ZYTS550

2024

地理科学
中国科学院 东北地理与农业生态研究所

地理科学

CSTPCDCSSCICHSSCD北大核心
影响因子:3.117
ISSN:1000-0690
年,卷(期):2024.44(8)
  • 14