首页|内蒙古森林和草地地上生物量遥感反演

内蒙古森林和草地地上生物量遥感反演

扫码查看
以MODIS、Landsat和土地利用/覆被变化数据集等多源遥感数据为数据源,结合地上生物量样点数据,从反射率、植被指数、气候要素和土壤质地及养分含量 4个方面提取 21个特征变量,经特征变量优化后,对比 5种机器学习方法,选择精度最高的模型,根据不同气候类型分区,反演各气候区 2000-2020年内蒙古森林和草地生长季地上生物量,分析其时空特征.结果表明:①特征筛选后的变量数量为 4~21个,其中反射率、植被指数和气候要素是所有生态系统和气候区地上生物量敏感的特征变量;②随机森林是反演精度最高的模型,而且分区能够明显提高模型精度;③年均森林生长季地上生物量围绕平均值(3.68 kg/m2)上下小幅度波动,21 a间略有上升,而草地呈现先下降再上升的趋势,整体上升,年均值从 2000年的 46.36 g/m2 上升到 2020年的 56.19 g/m2;④森林生长季地上生物量由北到南呈现"低-高-低-高"的空间分布态势,而草地则自西向东逐渐增高,21 a间低生物量面积减少,高生物量面积增大.本研究有助于了解当地自然资源动态,为大尺度多生态系统生物量反演提供思路.
Remote sensing inversion of forest and grassland aboveground biomass in Inner Mongolia,China
Multi-source remote sensing data were selected as the primary data sources,including MODIS,Landsat,and land use cover change production dataset.From these data,a total of 21 characteristic variables were extracted encompassing reflectance properties,vegetation indices,climatic factors,as well as soil texture and nutrient content.Following the optimization of these characteristic variables,5 distinct machine learning methods were employed to assess their individual advantages across different climate types.Based on the mod-el with the highest accuracy The spatiotemporal characteristics of forest and grassland aboveground biomass during the growing season in Inner Mongolia from 2000 to 2020 were analyzed.The results show that:1)The number of variables after feature selection varies from 4 to 21,among which reflectance,vegetation index and climatic factors are sensitive characteristic variables of aboveground biomass in all ecosystems and climatic zones;2)Random forest is the model with the highest inversion accuracy,and the precision is significantly bet-ter after zoning;3)The annual average aboveground biomass during the forest growing season fluctuates mod-estly around the average value(3.68 kg/m2)with a slight increase over 21 years,while grassland shows a trend of first decreasing and then increasing,with an overall increase,with the annual average value increasing from 46.36 g/m2 in 2000 to 56.19 g/m2 in 2020;4)The spatial distribution of aboveground biomass during the forest growing season shows a"low-high-low-high"trend from north to south,while grassland gradually increases from west to east.Over 21 years,the area of low biomass decreased and the area of high biomass increased.This study helps to understand the dynamics of local natural resources and provides ideas for large-scale multi-ecosystem biomass inversion.

aboveground biomassremote sensing inversionmulti-resource remote sensing dataInner Mon-golia

崔立晗、郑盛、徐敏

展开 >

浙江大学公共管理学院,浙江 杭州 310058

中国科学院空天信息创新研究院遥感科学国家重点实验室,北京 100101

地上生物量 遥感反演 多源遥感数据 内蒙古

2024

地理科学
中国科学院 东北地理与农业生态研究所

地理科学

CSTPCDCSSCICHSSCD北大核心
影响因子:3.117
ISSN:1000-0690
年,卷(期):2024.44(12)