首页|供需视角下老城区通风空间识别与匹配研究

供需视角下老城区通风空间识别与匹配研究

扫码查看
城市通风空间作为风环境优化的场所,亦是热岛效应缓解、居民舒适度提高的重要载体.从供需视角下开展老城区通风空间研究,能够为城市应对全球气候变化采取的适应性与低碳发展策略提供支撑和指引.论文以上海徐汇区、广州荔湾区、南京鼓楼区以及武汉硚口区为例,基于建筑形态数据、遥感数据、POI数据以及常住人口密度数据等多源数据,分别构建通风供给系数(ventilation supply index,VSI)与通风需求系数(ventilation demand in-dex,VDI)评估老城区的通风供给能力和需求水平,同时采用双变量局部空间自相关模型测度通风供给空间与需求空间的匹配关联程度,识别不同类型通风供需区域并划分管控干预优先级.结果表明:①老城区整体通风供给能力较低,整体通风需求水平较高,二者在空间上具有显著的错落异质性,供给系数高值区主要分布在蓝绿空间等开阔场所,需求系数高值区主要集聚在高密度、高开发强度空间.②老城区通风供需区域涵盖高供给—高需求、低供给—低需求、高供给—低需求以及低供给—高需求4种类型,其中处于供不应求(低供给—高需求)状态的空间单元比例约占14.9%~19.7%,通风供需匹配情况总体不容乐观,亟需得到管控优化以提升内部通风供给能力.③老城区高优先级管控区域分别位于上海徐汇区的徐家汇街道,广州荔湾区的华林、多宝、岭南、沙面、花地街道,南京鼓楼区的华侨路、湖南路、挹江门街道,武汉硚口区的宗关、汉正街道.
Identifying and matching ventilation spaces in old urban areas from the perspective of supply and demand
Urban ventilation space,as a place for wind environment optimization,is also an important carrier for heat island effect mitigation and residents'comfort improvement.The study of ventilation space in old urban areas based on the perspective of supply and demand can provide support and guidance for the adaptive and low-carbon development strategies adopted by cities to address global climate change.Taking Xuhui District in Shanghai,Liwan District in Guangzhou,Gulou District in Nanjing,and Qiaokou District in Wuhan as examples,the ventilation supply index(VSI)and ventilation demand index(VDI)were constructed based on architectural morphology data,remote sensing data,point of interest(POI)data,and resident population density data to evaluate the ventilation supply capacity and demand level of the old urban areas,respectively.Then,a bivariate local spatial autocorrelation model was used to measure the degree of correlation between ventilation supply space and demand space.Additionally,this study identified different types of ventilation supply and demand areas and priority areas for regulatory intervention.The results show that:1)The old urban areas have low average ventilation supply coefficients and high average ventilation demand coefficients,both of which have significant spatial heterogeneity.High supply coefficients are mainly distributed in open spaces such as green space and water,while high demand coefficients are mainly clustered in high-density and high-development intensity spaces.2)The ventilation supply and demand spaces in the old urban areas include four types:high supply-high demand,low supply-low demand,high supply-low demand,and low supply-high demand.The proportion of spatial units with low supply-high demand is approximately 14.9%to 19.7%.This indicates that the matching of ventilation supply and demand in the old urban areas is not optimistic,and there is an urgent need for control and optimization to enhance the ventilation supply capacity.3)The high-priority control areas in the old urban areas are Xujiahui Street in Xuhui District,Shanghai;Hualin Street,Duobao Street,Lingnan Street,Shamian Street,and Huadi Street in Liwan District,Guangzhou;Huaqiaolu Street,Hunanlu Street,and Yijiangmen Street in Gulou District,Nanjing;and Zongguan Street and Hanzheng Street in Qiaokou District,Wuhan.

urban ventilation spacesupply and demand matchingbivariate local spatial autocorrelation modelcontrol priorityold urban areas

方云皓、赵丽元

展开 >

华中科技大学建筑与城市规划学院,武汉 430074

湖北省城镇化工程技术研究中心,武汉 430074

城市通风空间 供需匹配 双变量局部空间自相关模型 管控优先级 老城区

国家自然科学基金项目

52378056

2024

地理科学进展
中国科学院地理科学与资源研究所 中国地理学会

地理科学进展

CSTPCDCSSCI北大核心
影响因子:2.458
ISSN:1007-6301
年,卷(期):2024.43(2)
  • 37