首页|基于自适应平方根容积卡尔曼滤波算法的分布式驱动车辆状态估计

基于自适应平方根容积卡尔曼滤波算法的分布式驱动车辆状态估计

Distributed Vehicle Driving State Estimation Based on Adaptive Square Root Cubature Kalman Filtering Algorithm

扫码查看
为了解决分布式驱动电动汽车在实时车辆行驶状态难以获取、估计精度较低的问题,提出了基于奇异值分解(SVD)的平方根容积卡尔曼滤波(SCKF)的分布式驱动车辆状态估计方法.SCKF算法通过奇异值分解优化误差协方差矩阵,以改善CKF在强非线性车辆系统或协方差矩阵非正定时状态估计精度降低甚至发散的问题,利用7 自由度车辆动力学模型和Dugoff轮胎模型求得的参数信息准确估计车辆行驶状态.在Matlab/Simulink仿真平台上进行试验验证,并与基于CarSim数据的虚拟值进行了对比分析.结果表明:基于该算法的估计结果更接近真实值,并且响应速度快、实时性强.
In order to solve the problems of difficulty in obtaining real-time vehicle driving sta-tus and low estimation accuracy of distributed driving electric vehicles,this paper proposes a distributed vehicle driving state estimation method based on the square root cubature Kalman fil-ter(SCKF)with singular value decomposition(SVD).The SCKF optimizes the error covari-ance matrix by singular value decomposition to improve the problem of reduced accuracy or even divergence of the CKF in strongly nonlinear vehicle systems or non-positive timing state estima-tion of the covariance matrix.The parameter information obtained from the 7-degree of freedom vehicle dynamics model and the Dugoff tire model is used to accurately estimate the vehicle driv-ing state.Experimental validation is carried out on a Matlab/Simulink simulation platform,and a comparison analysis with virtual values based on CarSim data is performed.The results show that the estimation results based on this algorithm are closer to the real values and have fast re-sponse and strong real-time performance.

vehicle state estimationsingular value decompositiondistributed driving vehicles

张策、张涛、葛平淑

展开 >

大连民族大学 机电工程学院,辽宁 大连 116650

车辆状态估计 奇异值分解 分布式驱动车辆

国家自然科学基金资助项目

52175078

2024

大连民族大学学报
大连民族学院

大连民族大学学报

CHSSCD
影响因子:0.266
ISSN:1009-315X
年,卷(期):2024.26(1)
  • 10