首页|基于改进InfoGAN的字体多风格融合模型

基于改进InfoGAN的字体多风格融合模型

扫码查看
为解决汉字字体结构复杂、多风格融合特征难度大的问题,提出了一种基于改进InfoGAN的字体多风格融合方法.对InfoGAN特征多风格融合模型进行改进,调整输入向量的维度,添加了通道注意力模块.InfoGAN可以将较难提取的风格特征清晰化、规律化,通过改进InfoGAN,实现了对汉字字体图像风格特征的多风格融合,得到了能够控制汉字字体风格的特征向量.把改进的InfoGAN模型和VAE、Beta-VAE、AAE进行对比实验,再通过模型消融实验证明通道注意力的有效性.实验结果表明:该模型能够更好地将不同风格的特征进行分离,避免了信息重叠和冲突,可以有效准确地完成字体多风格融合任务.
A Font Multi-style Fusion Model Based on Improved InfoGAN
To solve the problem of complex font structure and difficulty in fusing multi-style features in Chinese characters,a font multi-style fusion method based on improved InfoGAN is proposed.The InfoGAN feature multi-style fusion model has been improved by adjusting the dimension of the input vector and adding a channel attention module.InfoGAN can clarify and regularize style features that are difficult to extract.By improving InfoGAN,multi-style fusion of Chinese font image style features is achieved,and feature vectors that can control Chinese font style are obtained.The improved InfoGAN model is compared with VAE,Beta-VAE and AAE in experiments,and then the effectiveness of channel attention is demonstrated through model ablation experiments.The experimental results show that the model can better separate features of different styles,avoid information overlapping and conflicting,and complete the task of font multi-style fusion effectively and accurately.

integration of multiple features and styleschannel attentionInfoGAN

陈芯芯、王江江

展开 >

大连民族大学计算机科学与工程学院 辽宁 大连 116650

大连市汉字计算机字库设计技术创新中心 辽宁 大连 116650

特征多风格融合 通道注意力 InfoGAN

2024

大连民族大学学报
大连民族学院

大连民族大学学报

CHSSCD
影响因子:0.266
ISSN:1009-315X
年,卷(期):2024.26(1)
  • 15