首页|基于双策略图卷积网络的方面级情感分析

基于双策略图卷积网络的方面级情感分析

扫码查看
针对依赖解析结果不准确和在线评论复杂性导致的方面词情感分类效果差的问题.提出一种基于双策略图卷积网络(Dual-Strategy Graph Convolutional Network)模型的方法.首先利用依赖解析器中反映所有依赖关系的概率矩阵构造一个具有丰富句法知识的SynGCN模块,其次利用自注意力机制获得邻接矩阵形式的注意力得分矩阵作为WcoGCN模块的邻接矩阵,并利用正则化器约束该模块中的注意力分数来精准捕获词之间的相关性.实验结果表明:该模型准确率、F1 值均优于其他的模型,能够提升公共数据集的情感分类效果.
Aspect-level Sentiment Analysis with Dual-strategy Graph Convolutional Networks
Aiming at the problem of poor sentiment classification effect of aspect words caused by inaccurate dependency parsing results and complexity of online reviews,this paper proposes a method based on the Dual-strategy Graph Convolutional Network.Firstly,the probability ma-trix which reflects all dependencies in the dependency parser is used to construct a SynGCN module with rich syntactic knowledge.Secondly,the self-attention mechanism is utilized to ob-tain the attention score matrix of the adjacency matrix as the adjacency matrix of the WcoGCN module,and the regularizer is exploited to constrain the attention score in the module to accu-rately capture the correlations between words.Experimental results show that the accuracy and F1 value of the proposed model are better than other models,and it can improve the effect of sentiment classification on public data sets.

aspect wordssentiment wordsdependency relationshipSynGCNWcoGCN

孙赫文、孟佳娜、丁梓晴、江烽

展开 >

大连民族大学 计算机科学与工程学院 辽宁 大连 116650

方面词 情感词 依赖关系 SynGCN WcoGCN

大连民族大学研究生创新项目

0108-100002

2024

大连民族大学学报
大连民族学院

大连民族大学学报

CHSSCD
影响因子:0.266
ISSN:1009-315X
年,卷(期):2024.26(1)
  • 20