首页|基于YOLO-BCN的PCB裸板小目标缺陷检测

基于YOLO-BCN的PCB裸板小目标缺陷检测

PCB Bare Board Small Target Defect Detection Based on YOLO-BCN

扫码查看
为了解决PCB裸板在小目标缺陷检测过程中容易出现漏检、错检等问题,提出了基于改进YOLOv7的PCB裸板缺陷检测算法YOLO-BCN.首先在原始YOLOv7主干网络中引入了BRA注意力机制,实现更灵活的计算分配和内容感知,使网络具备动态的查询感知稀疏性.然后替换CARAFE上采样算子,来提取更多浅层特征,从而有效改善模型对小目标的检测性能.最后引入NWD损失函数,结合IoU来优化回归损失函数,降低对小目标位置偏差的敏感性.实验结果表明:改进后的YOLOv7的mAP@0.5值和mAP@0.5:0.9值相较于原始模型分别提高了3.28%和2.74%,F1因子提升了3.91%,检测速率为46.84 FPS.有效提升了PCB小目标缺陷检测的精度.
In order to solve the problem that PCB bare boards were likely to have missed detections and false detections during the small target defect detection process,a PCB bare board defect detection algorithm based on improved YOLOv7,called YOLO-BCN,was proposed.First,the BRA attention mechanism was introduced into the original YOLOv7 backbone network to achieve more flexible computing allocation and content awareness,so that the network had dynamic query-aware sparsity.Then the CARAFE upsampling operator was replaced to extract more shallow features,thereby effectively improving the detection performance of the model for small targets.Finally,the NWD loss function was introduced and combined with IoU to optimize the regression loss function and reduce the sensitivity to small target position deviations.Experimental results show that the mAP@0.5 value and mAP@0.5:0.9 value of the improved YOLOv7 are increased by 3.28%and 2.74%respectively,compared with the original model,the F1 factor is increased by 3.91%,and the detection rate is 46.84 FPS,which effectively improves the accuracy of PCB small target defect detection.

PCB bare boardYOLOv7small object detectionattention mechanismloss function

李柏雄、刘俊杰、刘建青、葛平淑

展开 >

大连民族大学 机电工程学院,辽宁 大连 116650

大连日佳电子有限公司 科技研发部,辽宁 大连 116600

PCB裸板 YOLOv7 小目标检测 注意力机制 损失函数

国家自然科学基金

51975089

2024

大连民族大学学报
大连民族学院

大连民族大学学报

CHSSCD
影响因子:0.266
ISSN:1009-315X
年,卷(期):2024.26(3)
  • 4