首页|点云多属性聚类的三维锥桶目标检测算法

点云多属性聚类的三维锥桶目标检测算法

3D Traffic-cone Object Detection Algorithm for Multi-attribute Clustering of Point Clouds

扫码查看
为了解决大学生方程式无人车在赛道环境中锥桶检测精度不高的问题,提出一种针对大学生方程式无人车比赛的三维锥桶目标检测算法.首先,在激光雷达采集到的点云中提取ROI区域;其次,在该区域进行地面点去除;最后,在非地面点云中执行点云聚类,将属于锥桶的点聚类为一簇,实现赛道锥桶目标的检测.本方法对原有单属性聚类方法进行改进,采用点云强度和点云密度多属性进行聚类.通过大学生方程式无人车实车测试,提出的三维锥桶目标检测算法在多个赛道场景中均取得90%以上的准确度,为后续大学生方程式无人车比赛提供了优异性能的算法.
In order to solve the problem that the traffic-cone detection accuracy of Formula Student unmanned vehicles in the track environment is not high,this paper proposes a three-dimensional traffic-cone target detection algorithm for Formula Student unmanned vehicle competition.The algorithm first extracts the ROI area from the point cloud collected by the lidar,then removes the ground points in the area,and finally performs point cloud clustering in the non-ground point cloud,and clusters the points belonging to the traffic-cone into a cluster to realize the detection of the traffic-cone in the track.This method improves the original single-attribute clustering method,and uses multiple attributes of point cloud intensity and density for clustering.Through the actual vehicle test of Formula Student unmanned vehicle,the three-dimensional traffic-cone object detection algorithm proposed in this paper achieves more than 90%accuracy in multiple track scenes,providing excellent performance algorithm for subsequent Formula Student unmanned vehicle competition.

traffic-cone object detectionmulti-attribute clusteringFormula Student unmanned vehicles

高千喜、毛琳、杨大伟

展开 >

大连民族大学 机电工程学院,辽宁 大连 116650

锥桶目标检测 多属性聚类 大学生方程式无人车

国家自然科学基金辽宁省自然科学基金辽宁省自然科学基金辽宁省自然科学基金

6167308420170540192201805508662020-MZLH-24

2024

大连民族大学学报
大连民族学院

大连民族大学学报

CHSSCD
影响因子:0.266
ISSN:1009-315X
年,卷(期):2024.26(3)
  • 10