首页|轨迹预测中局部自注意力时序编码网络

轨迹预测中局部自注意力时序编码网络

扫码查看
针对传统编码器应用于轨迹预测时,难以捕捉短暂停车或急转弯等局部时间尺度下的轨迹变化(简称局部变化)从而影响预测准确性的问题,提出一种局部自注意力时序编码架构(Loc-SelfAttention).该算法充分利用小尺度卷积核的优越局部感知能力,敏锐地捕捉和提取局部变化的特征,并利用自注意力机制,根据局部变化对于未来轨迹分布的影响程度动态赋予提取的局部特征注意力权重,从而过滤噪声和杂点,筛选出有效的局部特征,提高轨迹预测准确性.实验结果表明:Loc-SelfAttention算法在Argoverse运动预测基准上与HOME轨迹预测算法相比,最小平均位移误差降低3.7%,最小最终位移误差降低3.1%,失误率降低4.8%,在自动驾驶和智能交通管理等领域具有一定应用前景.
Local Self-attention Temporal Encoding Network for Trajectory Prediction
In response to the challenge of traditional encoders failing to capture local trajectory changes,such as brief stops or sharp turns,at the local temporal scale,leading to decreased prediction accuracy,we propose a Local-SelfAttention Temporal Encoding Architecture(Loc-SelfAttention).This algorithm fully utilizes the superior local perception capabilities of small-scale convolution kernel to sharply capture and extract local trajectory changes.Leveraging self-attention mechanism,it dynamically assigns attention weights to extracted local features based on their impact on future trajectory distribution,effectively filtering out noise and outliers,selecting effective local features,and thereby enhancing trajectory prediction accuracy.The experimental results show that the Loc-SelfAttention algorithm reduces minimum average displacement error by 3.7%,minimum final displacement error by 3.1%,and miss rate by 4.8%compared to the HOME trajectory prediction algorithm on the Argoverse Motion Forecasting Benchmark.It has certain application prospects in fields such as autonomous driving and intelligent traffic management.

local temporal scalesmall-scale convolution kernelself-attention mechanismtemporal encoding

史世莹、毛琳、杨大伟

展开 >

大连民族大学 机电工程学院,辽宁 大连 116650

局部时间尺度 小尺度卷积核 自注意力机制 时序编码

国家自然科学基金辽宁省自然科学基金辽宁省自然科学基金辽宁省自然科学基金

6167308420170540192201805508662020-MZLH-24

2024

大连民族大学学报
大连民族学院

大连民族大学学报

CHSSCD
影响因子:0.266
ISSN:1009-315X
年,卷(期):2024.26(3)
  • 12