首页|基于无迹卡尔曼滤波的车辆状态与参数联合观测

基于无迹卡尔曼滤波的车辆状态与参数联合观测

扫码查看
为提高分布式驱动电动汽车的控制性能,并针对部分汽车状态参数无法直接通过传感器测量的情况,采用无迹卡尔曼滤波设计车辆状态与参数耦合非线性观测器,对整车的状态及执行器失效系数进行估计.建立非线性车辆动力学模型,将电机的故障诊断问题转化为参数的实时估计问题,利用UKF(Unscented Kalman Filter)对汽车横摆角速度、纵向车速等进行实时估计,运用Carsim/Simulink联合仿真进行验证.仿真结果表明:该观测器能准确估计出上述相关车辆状态和参数,验证了该估计算法具有较高的实时性与准确性.
Joint Observation of Vehicle States and Parameters Based on Unscented Kalman Filtering
In order to improve the control performance of distributed driving electric vehicles,and for the situation that some vehicle state parameters cannot be directly measured by sensors,this paper used unscented Kalman filters to design a nonlinear observer for vehicle state and parameter coupling,and estimated the vehicle state and actuator failure coefficients. The nonlinear vehicle dynamic model was established,so that the motor fault diagnosis problem was transformed into a real-time parameter estimation problem. The yaw speed and vehicle speed were estimated in real time by UKF (Unscented Kalman Filter). Finally,the Carsim/Simulink co-simulation was used to verify the problem. The simulation results show that the observer can accurately estimate the above related vehicle states and parameters,which verifies that the estimation algorithm has high real-time performance and accuracy.

distributed driving electric vehiclesparameter estimationUKFfault diagnosis

李欣、葛平淑、王阳、张涛、刘俊杰

展开 >

大连民族大学机电工程学院,辽宁大连 116650

辽宁省车用新能源动力系统设计工程研究中心,辽宁大连116650

分布式驱动电动汽车 参数估计 UKF 故障诊断

国家自然科学基金项目

52175078

2024

大连民族大学学报
大连民族学院

大连民族大学学报

CHSSCD
影响因子:0.266
ISSN:1009-315X
年,卷(期):2024.26(5)