首页|基于K-shell的加权网络节点影响力研究方法

基于K-shell的加权网络节点影响力研究方法

扫码查看
针对现有关键节点识别方法在准确性和分辨率上的局限性,提出了一种改进的K-shell排序方法,在传统K-shell分解的基础上,结合节点度数、邻居节点影响力和边权重,引入信息熵理论,细化同一K-shell层内节点的相对重要性.实验结果表明:该方法显著提升了排序的准确性和单调性,能够更有效地区分同一K-shell层内的节点重要性,准确识别出对网络结构影响较大的关键节点.该算法从多个维度考虑影响关键节点识别重要性的因素,在准确性和分辨率方面有显著的提升,对网络匿名隐私保护中的关键节点挖掘具有重要意义.
A Weighted Network Node Influence Analysis Method Based on K-shell
In response to the limitations in accuracy and resolution of existing key node identification methods,an improved K-shell ranking method is proposed. This method builds on traditional K-shell decomposition,integrating node degree,neighboring node influence,edge weights,and information entropy theory to refine the relative importance of nodes within the same K-shell level. Experimental results show that this method significantly improves the accuracy and monotonicity of rankings,effectively distinguishing the importance of nodes within the same K-shell level and accurately identifying key nodes with substantial network impact. This algorithm considers from multiple dimensions that affect the importance of key node identification,significantly improving accuracy and resolution. It holds great significance for the mining of key nodes in network anonymity and privacy protection.

node importanceK-shellweighted networkSIR Modelcomplex networks

吴思源、许爽

展开 >

大连民族大学信息与通信工程学院,辽宁大连 116605

节点重要性 K-shell 加权网络 SIR模型 复杂网络

2024

大连民族大学学报
大连民族学院

大连民族大学学报

CHSSCD
影响因子:0.266
ISSN:1009-315X
年,卷(期):2024.26(5)