首页|一种可变形网络小样本字体生成方法

一种可变形网络小样本字体生成方法

扫码查看
针对基于小样本生成汉字字体时出现的字形整体模糊和结构生成错误问题,提出了一种融合通道先验卷积注意力和深度可分离卷积的可变形生成网络.该网络结构在可变形生成网络的基础上,融合了通道先验卷积注意力和深度可分离卷积,以更好的提取全局特征,确保汉字结构的正确生成.通过与DG-Font、DG-Font++、MX-Font和CF-Font四个经典模型对比,所提方法在SSIM,FID等指标上均优于其他模型.同时,通过消融实验验证了所提网络模型的有效性.实验结果表明:所提网络模型较好地解决了基于小样本生成汉字字体时字形整体模糊和结构生成错误的问题.
A Few-shot Font Generation Method Based on Deformable Network
To address the challenges of overall blurriness and structural inaccuracies in few-shot Chinese font generation,a deformable generative network that integrates channel-prior convolutional attention and depthwise separable convolutions is proposed. The network architecture which builds upon the foundation of deformable generative networks is enhanced with channel-prior convolutional attention and depthwise separable convolutions to capture global features better and ensure accurate structural generation of Chinese font characters. Comparative evaluations against four classic models,DG-Font,DG-Font++,MX-Font,and CF-Font,demonstrate that the proposed method excels in metrics such as SSIM (Structural Similarity Index Measure) and FID (Fréchet Inception Distance). Furthermore,ablation experiments validate the effectiveness of the proposed network model. The experimental results demonstrate that the proposed network model effectively mitigates the issues of overall blurriness and structural errors in few-shot Chinese font generation.

font generationfew shotchannel-prior convolutional attentiondepthwise separable convolution

焉学灏、阮馨瑶

展开 >

大连民族大学计算机科学与工程学院,辽宁大连 116650

大连民族大学大连市汉字计算机字库设计技术创新中心,辽宁大连 116650

中央财经大学财政税务学院,北京 112206

字体生成 小样本 通道先验卷积注意力 深度可分离卷积

大连市创新基金民族教育信息化教育部重点实验室联合基金

2023JJGX026EIN2024B002

2024

大连民族大学学报
大连民族学院

大连民族大学学报

CHSSCD
影响因子:0.266
ISSN:1009-315X
年,卷(期):2024.26(5)