首页|基于LSTM与XGBoost融合的养殖水质pH值预测方法研究

基于LSTM与XGBoost融合的养殖水质pH值预测方法研究

扫码查看
为了确保水产养殖生态系统平衡及水生动物的健康,提出了一种融合长短期记忆网络(LSTM)和XGBoost算法的养殖水质pH值预测方法(PCA-ES-LSTM-BSO-XGBoost,PELBX)。首先,通过主成分分析(PCA)对水质数据进行降维处理,以简化参数复杂性并提高模型训练的效率与精度;其次,利用LSTM网络捕获水质参数随时间的动态变化,并采用早停法避免过拟合,确保模型对未见数据具有较高的预测准确度;此外,通过BSO算法并行优化XGBoost模型的参数,提高pH值预测的精确度;最后,将LSTM与XG-Boost模型的预测结果进行加权集成,有效结合了时间序列分析与非线性学习的优势,显著提高了预测准确度。结果表明,PELBX模型在pH值预测方面表现优越,具体表现为0。115 的均方根误差、0。088 的平均绝对误差、1。066%的平均绝对百分比误差,以及 0。747 的决定系数;相较于消融试验中表现最佳的 PCA-LSTM-BSO-XGBoost模型,性能分别提升了 8。73%、8。33%、8。26%和 7。64%;与同领域中表现最好的BiL-STM-GRU预测模型相比,性能分别提升了 10。16%、1。12%、0。56%和 8。73%。研究表明,本研究中提出的PELBX模型在提升水质pH值预测的准确性和稳定性方面表现出明显的优势,验证了该方法的有效性和可行性。
Prediction method of pH value in aquaculture water quality based on the integration of LSTM and XGBoost
To ensure equilibrium of aquaculture ecosystem and health of aquatic animals,a pH prediction method for aquaculture water quality,designated as PCA-ES-LSTM-BSO-XGBoost(PELBX),was established.In the PELBX,principal component analysis(PCA)was firstly applied to reduce the dimensionality of water quality da-ta,simplifying parameter complexity and enhancing the efficiency and accuracy of model training.Subsequently,the Long Short-Term Memory(LSTM)network was utilized to capture the dynamic changes in water quality param-eters over time,employing early stopping to prevent overfitting and to ensure high prediction accuracy for unseen data.Moreover,the parameters of the XGBoost model in parallel were optimized by the BSO algorithm to improve the precision of pH predictions.Finally,the predictions from the LSTM and XGBoost models were weighted and combined,effectively integrating the advantages of time series analysis and nonlinear learning,significantly enhan-cing prediction accuracy.Experimental results showed that the PELBX model outperformed in pH prediction with a root mean square error of 0.115,mean absolute error of 0.088,mean absolute percentage error of 1.066%,and a coefficient of determination of 0.747.Compared to the best-performing PCA-LSTM-BSO-XGBoost model in ablation studies,the performance parameters above were improved by 8.73%,8.33%,8.26%,and 7.64%respectively;and relative to the best model in the field,BiLSTM-GRU,performances were improved by 10.16%,1.12%,0.56%,and 8.73%respectively.The finding demonstrates that the PELBX model significantly enhances the accuracy and stabil-ity of water pH value prediction,validating the effectiveness and feasibility of the proposed method.

LSTMXGBoostPCAPELBX modelwater quality pH prediction

郭方一、刘明剑、王刚、张思佳、单渤林、刘通

展开 >

大连海洋大学 机械与动力工程学院,辽宁 大连 116023

大连海洋大学信息工程学院,辽宁大连 116023

大连市智慧渔业重点实验室,辽宁 大连 116023

大连海洋大学 创新创业学院,辽宁 大连 116023

展开 >

LSTM XGBoost PCA PELBX模型 水质pH值预测

2024

大连海洋大学学报
大连海洋大学

大连海洋大学学报

CSTPCD北大核心
影响因子:0.913
ISSN:2095-1388
年,卷(期):2024.39(6)