首页|基于专利转移网络视角的长三角城市群城际技术流动的时空演化

基于专利转移网络视角的长三角城市群城际技术流动的时空演化

扫码查看
基于2004-2015年的专利交易数据,融合大数据挖掘技术、社会网络分析等方法,系统刻画长三角城市群内部技术流动的主体、客体、网络的时空演化规律:①企业是技术流动的主体 ,高校、科研机构技术输出有限;主体倾向内部技术流通,外溢不足;专利类型由外观设计型向发明型、实用新型转变,部类结构保持均衡稳定.②上海、杭州、南京、苏州作为技术流动网络的核心节 点,由技术辐合向扩散中心转化,合肥、南通、嘉兴等是主要技术转入地.③技术流集散交互,以高等级城市向低等级城市转移和空间邻近城市相互作用为主导,呈现等级扩散和接触扩散耦合态势.④ 技术流动空间分布不均衡,马太效应明显,城市链接对象不断延伸,地方依赖与路径创造并存.⑤技术流动网络的空间结构呈现离散均质—单中心(上海)集散—双核(上海、苏州)驱动—多核心轴辐 式(上海、苏州、杭州、南京)的演化规律.
Spatio-temporal evolution of interurban technological flow network in the Yangtze River Delta Urban Agglomeration:From the perspective of patent transaction network
Taking the Yangtze River Delta Urban Agglomeration as an example, based on the perspective of patent transaction network and applying the big-data mining technology, social network analysis and GIS, this paper describes the regular laws of the spatiotemporal evolution of the interurban technological flow network systemically. The results are obtained as follows:First, enterprise is the main body of interurban technological transfer, while universities and institutes play a minor role in the patent transferring relationship. Besides, technological transfer tends to generate in an internal system, instead of spillovers outside. What's more, the patent related to appearance designs is less than innovative patent and utility-oriented patent. Second, as the diffusion centers of the interurban technological flow network under a hub-and-spoke organization, Shanghai, Hangzhou, Nanjing and Suzhou make a transfer from technical convergences to technical centers. Furthermore, Hefei, Nantong and Jiaxing become the main technological absorbers. Third, two diffusion models in the interurban technological flow network are observed. One is hierarchical diffusion model from hubs towards lower-tier cities or sub-centers. The other is contacting diffusion models and technological flows have emerged between those neighboring city pairs because of spatial proximity. Fourth, interurban technological transfers are not well distributed. Under the Matthew Effect, the dynamics of the technological flow network is self-organized with the coupling mechanism including place dependence and path creation. Finally, the spatial evolution of the network presents an evolutionary law from discrete homogeneity with single core (e.g., Shanghai) to dual-hub driven pattern (i.e., Shanghai and Suzhou) to multi-core network with a hub-and-spoke system (e.g., Shanghai, Suzhou, Hangzhou and Nanjing).

technological flowpatent transaction networkspatiotemporal evolutionsocial network analysisYangtze River Delta Urban Agglomeration

刘承良、管明明

展开 >

华东师范大学城市与区域科学学院,上海 200241

华东师范大学全球创新与发展研究院,上海 200062

华东师范大学崇明生态研究院,上海 200062

技术流动 专利权转移 时空演化 社会网络 长三角城市群

国家自然科学基金上海市软科学研究重点项目

4157112317692103600

2018

地理研究
中国科学院地理科学与资源研究所

地理研究

CSTPCDCSSCICSCDCHSSCD北大核心
影响因子:2.214
ISSN:1000-0585
年,卷(期):2018.37(5)
  • 49
  • 11