首页|多源径流数据在中国不同流域的比较研究

多源径流数据在中国不同流域的比较研究

扫码查看
多源径流数据是理解地表水资源分布格局和演变规律的基础,径流数据的比较和筛选是其应用和推广的前提,但中国范围内的径流数据比较研究仍相对缺乏.本研究在中国九大流域片,选取控制范围不重叠、1961-2014年天然径流资料连续的82个水文站,从多年平均径流量和径流变化趋势两个方面,评价了 CMIP6地球系统模式、ISIMIP3a全球水文模型、基于陆面模型的GLDAS和CNRD、基于机器学习的GRUN等四类33套径流数据集的质量.研究表明:①百分比偏差的评价结果显示,经过偏差校正的CMIP6、ISIMIP3a、GLDAS、GRUN、CNRD均能较好模拟大部分流域的平均径流;综合标准差、均方根误差、皮尔逊相关系数3个评价角度的泰勒图分析结果显示,CNRD在松辽河流域,长江、珠江、东南诸河流域,西北、西南诸河流域表现最优,偏差校正后的CMIP6和GLDAS多模型平均结果在黄淮海流域表现最优.②多源径流数据对多年平均径流量的模拟普遍较好,而对年径流变化趋势的模拟结果较差,特别是CMIP6和GRUN严重低估了径流趋势,约10个流域的趋势模拟结果与天然径流资料的趋势相反.③多源径流数据在相对干旱区域模拟结果较差,亟需提高驱动数据质量、改进模型结构、优化模型参数,以提升模型对干旱区水循环过程模拟的精度.这项工作为研究中国河川径流及地表水资源时空演变规律,提供了数据筛选的重要依据,为多源径流数据在中国不同流域的更新与发展,明确了可能的问题和改进方向.
Comparing multi-source runoff data in different watersheds across China
The multi-source runoff data serve as a foundation for comprehending the spatial pattern and temporal evolution of surface water resources.Comparing and screening runoff data are prerequisites for their effective application and widespread adoption.However,comparing multi-source runoff data in China remains a gap.To address this,here,we collect continuous natural streamflow data from 82 hydrological stations covering the period of 1961-2014.These stations are situated in nine major river basins across China,each with distinct non-overlapping control areas.We utilize natural streamflow data as the benchmark to compare 33 data sets from four categories,i.e.,data from earth system models in CMIP6,global hydrology models in ISIMIP3a,land surface models in GLDAS and CNRD,and machine learning results from GRUN,in terms of the multi-year mean streamflow and annual streamflow trend.The results indicate that:(1)PBIAS shows that the bias-corrected CMIP6,ISIMIP3a,GLDAS,GRUN,and CNRD can grasp the mean streamflow in most watersheds,and the Taylor diagram analysis integrating standard deviation,root mean square error,and Pearson correlation coefficient shows that CNRD performs best in the Songliao River Basin,Yangtze River Basin,Pearl River Basin,Southeast river basins,and Northwest and Southwest river basins,while the bias-corrected CMIP6 and ISIMIP3a multi-model ensemble mean show excellent simulation in Huang-Huai-Hai River Basin.(2)The multi-source runoff data exhibit accurate representation of the annual mean natural streamflow,while the simulation results for trends are not satisfactory,particularly for CMIP6 and GRUN,as they significantly underestimate the runoff trends in approximately 10 watersheds,resulting in opposite trends compared to the reference data.(3)The simulation also performs poorly in relatively arid regions,highlighting the urgent necessity to enhance the quality of the driving data,refine the model structure,and optimize model parameters to improve the accuracy of the model in simulating the water cycle process in arid regions.This work provides an important basis for data screening to study the spatial and temporal evolution of streamflow and surface water resources in China,and clarifies the possible problems and measures for the updating and development of multi-source runoff data in different watersheds across China.

streamflow comparisonearth system modelglobal hydrology modelland surface modelmachine learning algorithm

潘扎荣、王恺文、盛志刚、徐翔宇、周演腾、王冠、田巍

展开 >

水利部水利水电规划设计总院,北京 100120

中国科学院地理科学与资源研究所陆地水循环及地表过程重点实验室,北京 100101

绍兴市镜岭水库建设运行中心,绍兴 312000

绍兴舜江源省级自然保护区管理中心,绍兴 312000

中国南水北调集团东线有限公司,北京 100160

中国南水北调集团有限公司,北京 100036

展开 >

径流数据比较 地球系统模式 全球水文模型 陆面模型 机器学习

国家自然科学基金中国科协青年人才托举工程项目中国博士后科学基金

52209040YESS202203312022M713119

2024

地理研究
中国科学院地理科学与资源研究所

地理研究

CSTPCDCSSCICHSSCD北大核心
影响因子:2.214
ISSN:1000-0585
年,卷(期):2024.43(4)
  • 31