首页|基于卷积自动编码器和极端梯度提升树的桥梁损伤识别

基于卷积自动编码器和极端梯度提升树的桥梁损伤识别

扫码查看
为了提升桥梁损伤检测的准确性和效率,提出了一种新的数据驱动损伤识别方法.首先采用卷积自动编码器(CAE)通过数据重构方式从桥梁结构加速度信号中提取关键特征,然后通过极端梯度提升树(XG-Boost)对特征数据进行分析,从而实现高精度和高泛化能力的损伤识别.将所提方法用于一座三跨连续梁的数值模拟研究,并在一座斜拉桥缩尺模型上进行了试验验证.数值模拟结果表明,三跨连续梁6种单损伤工况的识别误差均在2.9%以内,4种双损伤工况的识别误差均在3.1%以内.试验验证结果表明,斜拉桥单根拉索的索力减小20%时,该方法仅通过主梁上的传感器即可准确识别不同位置的拉索损伤,在各个损伤案例中均达到了95.8%以上的识别精度.所提方法在不同的损伤场景下均具有较高的识别精度和泛化能力.
Bridge damage identification based on convolutional autoencoders and extreme gradient boosting trees
To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the acceleration signal of the bridge structure through data reconstruction.The extreme gradient boosting tree(XGBoost)was then used to perform analysis on the feature data to achieve damage detection with high accuracy and high performance.The proposed method was applied in a numerical simulation study on a three-span continuous girder and further validated experimentally on a scaled model of a cable-stayed bridge.The numerical simulation results show that the identification errors remain within 2.9%for six single-damage cases and within 3.1%for four double-damage cases.The experimental validation results demonstrate that when the tension in a single cable of the cable-stayed bridge decreases by 20%,the method accurately identifies damage at different cable locations using only sensors installed on the main girder,achieving identification accuracies above 95.8%in all cases.The proposed method shows high identification accuracy and generalization ability across various damage scenarios.

structural health monitoringdamage identificationconvolutional autoencoder(CAE)extreme gradient boosting tree(XGBoost)machine learning

段元锋、段政腾、章红梅、郑荣俊

展开 >

浙江大学建筑工程学院,杭州 310058

结构健康监测 损伤识别 卷积自动编码器 极端梯度提升树 机器学习

2024

东南大学学报(英文版)
东南大学

东南大学学报(英文版)

影响因子:0.211
ISSN:1003-7985
年,卷(期):2024.40(3)