首页|基于Transformer的节假日短期母线负荷预测修正机制

基于Transformer的节假日短期母线负荷预测修正机制

扫码查看
为了解决短期母线负荷预测不够精准,且该现象在节假日期间尤为显著的问题,提出一种基于Trans-former的定制架构增强机制.首先对输入数据进行聚类,以降低簇复杂性并捕获固有特性;然后利用门控残差连接有选择性地在各层之间传播显著特征,采用注意力机制专注识别多元时间序列数据中的显著模式;最后使用带有预训练架构减少训练计算资源需求.基于大量数据的实验结果表明,所提机制在全母线评估上将预测准确度相较对比算法提高至少32.00%,对节假日负荷曲线拟合效果突出,同时预训练方法将所提算法训练时间减少65.75%以上.所提机制能在高效预测母线负荷结果的同时提升节假日预测鲁棒性,因而能更有效适应实际预测场景.
Transformer-based correction scheme for short-term bus load prediction in holidays
To tackle the problem of inaccurate short-term bus load prediction,especially during holidays,a Transformer-based scheme with tailored architectural enhancements is proposed.First,the input data are clustered to reduce complexity and capture inherent characteristics more effectively.Gated residual connections are then employed to selectively propagate salient features across layers,while an attention mechanism focuses on identifying prominent patterns in multivariate time-series data.Ultimately,a pre-trained structure is incorporated to reduce computational complexity.Experimental results based on extensive data show that the proposed scheme achieves improved prediction accuracy over comparative algorithms by at least 32.00%consistently across all buses evaluated,and the fitting effect of holiday load curves is outstanding.Meanwhile,the pre-trained structure drastically reduces the training time of the proposed algorithm by more than 65.75%.The proposed scheme can efficiently predict bus load results while enhancing robustness for holiday predictions,making it better adapted to real-world prediction scenarios.

short-term bus load predictionTransformer networkholiday loadpre-training modelload clustering

唐宁恺、陆继翔、陈天宇、束蛟、昌力、陈涛

展开 >

电网运行风险防御技术与装备全国重点实验室,南京 211106

南瑞集团有限公司(国网电力科学研究院有限公司),南京 211106

东南大学电气工程学院,南京 211189

短期母线负荷预测 Transformer网络 节假日负荷 预训练模型 负荷聚类

2024

东南大学学报(英文版)
东南大学

东南大学学报(英文版)

影响因子:0.211
ISSN:1003-7985
年,卷(期):2024.40(3)