首页|共享单车出行需求影响因素研究:以上海市为例

共享单车出行需求影响因素研究:以上海市为例

扫码查看
研究共享单车出行影响机制有助于优化共享单车的使用体验,提高出行效率,减少交通拥堵,推动共享单车行业健康发展。本文针对共享单车出行需求影响机制问题,基于上海市共享单车出行和道路交通等多源数据,选取道路交通基础设施、公共交通和土地利用三方面的相关变量来构建共享单车出行需求与影响因素关系的OLS(普通最小二乘法)和GWR(地理加权回归)回归模型。研究表明:地理加权回归模型(GWR)相比普通最小二乘法模型(OLS)拟合度更好;变量影响程度方面,地铁站点密度越高,对共享单车出行需求的促进作用越强,其次是主干道密度和次干道密度;而住宿服务密度、公司企业密度、公交站点密度、科教文化密度和支路密度对共享单车出行需求的作用呈正相关但无明显的积极影响,该研究结果可为企业对共享单车的布局及运营管理提供参考。
Research on influencing factors of shared bicycle travel demand:taking Shanghai as an example
Studying the impact mechanism of shared bicycle travel can help optimize the user experience,improve travel efficiency,reduce traffic congestion,and promote the healthy development of the shared bicycle industry.This study addresses the issue of the influencing mechanism of shared bicycle travel demand and builds OLS(ordinary least squares)and GWR(geographically weighted regression)regression models using multi-source data on shared bicycle travel and road traffic in Shanghai,selecting relevant variables from road traffic infrastructure,public transportation,and land use to establish the relationship between shared bicycle travel demand and influencing factors.The results show that the GWR(geographically weighted regression)model has a better fit than the OLS(ordinary least squares)model;in terms of variable impact,the higher the metro station density,the greater the promotion of shared bicycle travel demand,followed by the densities of major arterial roads and secondary arterial roads;while the densities of accommodation services,company enterprises,bus stops,educational and cultural facilities,and secondary roads have a positive correlation with shared bicycle travel demand but no significant positive impact.The research results can provide reference for enterprises to layout and operate shared bicycles.

shared bicyclestravel demandinfluencing factorgeographically weighted regression

游尔康、马晓旦

展开 >

上海理工大学 管理学院,上海 200093

共享单车 出行需求 影响因素 地理加权回归

2025

智能计算机与应用
哈尔滨工业大学

智能计算机与应用

影响因子:0.357
ISSN:2095-2163
年,卷(期):2025.15(1)