首页|基于改进YOLOv5s的航拍图像目标检测

基于改进YOLOv5s的航拍图像目标检测

扫码查看
针对航拍图像中的背景复杂、冗余信息过多、小目标检测不到的问题,本文提出了一种改进YOLOv5s的目标检测算法(GGS-YOLOv5)。首先,在Backbone网络中加入了GAM注意力机制,减少复杂背景的干扰,抑制冗余信息,侧重检测目标,增强模型的特征提取能力,还提出了一种新型结构SPPFCSPC,增强感受野的同时提高检测速度和精度;其次,在Neck网络中引入GSConv模块,减少语义信息的丢失,增强全局感知和特征融合能力;最后,更换损失函数为SIoU,添加角度惩罚成本,有效地降低了自由度,进一步提升模型的收敛速度以及检测精度。将本文提出的算法在SeaDroneSee数据集进行消融以及对比实验,结果表明,该算法比原YOLOv5s召回率提高了 4。9%,mAP 0。5 提高了 2。8%。
Improve YOLOv5s object detection algorithm for aerial images
Aiming at the problems of complex background,excessive redundant information and undetectable small targets in aerial images,an improved object detection algorithm(GGS-YOLOv5)of YOLOv5s is proposed.Firstly,the GAM attention mechanism is added to the Backbone network to reduce the interference of complex backgrounds,suppress redundant information,focus on detection targets,and enhance the feature extraction ability of the model,and a new structure,SPPFCSPC,is proposed to enhance the receptive field while improving the detection speed and accuracy.Secondly,the GSConv module is introduced in the Neck network to reduce the loss of semantic information and enhance global perception and feature fusion capabilities.Finally,the loss function is replaced with SIoU,and the angle penalty cost is added to effectively reduce the degree of freedom,further improve the convergence speed and detection accuracy of the model.The results of the algorithm ablation in the SeaDroneSee dataset and the comparative experimental results show that the proposed algorithm improves the recall rate by 4.9%and mAP 0.5 by 2.8%compared with the original YOLOv5s.

aerial imageGSConvSPPFCSPCglobal attention mechanismSIoU

张庆旭、耿志卿、程亚鹏、苏嘉涛

展开 >

河北工程大学 信息与电气工程学院,河北 邯郸 056038

航拍图像 GSConv SPPFCSPC 全局注意力机制 SIoU

2025

智能计算机与应用
哈尔滨工业大学

智能计算机与应用

影响因子:0.357
ISSN:2095-2163
年,卷(期):2025.15(1)