智能计算机与应用2025,Vol.15Issue(1) :59-64.DOI:10.20169/j.issn.2095-2163.250109

基于深度学习的光纤振动信号分类研究

Design of simulation experiment for buried pipeline damage identification based on fiber optic vibration signal

盛学文 杨文辉 徐亚磊 宗子轩 许晨
智能计算机与应用2025,Vol.15Issue(1) :59-64.DOI:10.20169/j.issn.2095-2163.250109

基于深度学习的光纤振动信号分类研究

Design of simulation experiment for buried pipeline damage identification based on fiber optic vibration signal

盛学文 1杨文辉 1徐亚磊 1宗子轩 1许晨1
扫码查看

作者信息

  • 1. 国家管网集团 华中分公司,武汉 430021
  • 折叠

摘要

管道在城市给排水,油气输送等方面发挥着重要的作用,管道的实时监测十分的重要.本文提出了一种采用深度学习的残差网络,对分布式光纤振动传感系统收集到的光纤振动信号进行分类的技术.将光纤铺设在管道上,将分布式光纤振动传感系统采集到的信号视作一维时间序列,利用格拉米角场对一维时间序列进行编码得到对应的二维图像,将二维图像输入深度学习残差网络进行分类,实现对管道的实时监测.实验结果表明,该方法比直接将一维数据转换为灰度图再输入到深度学习神经网络中具有更高的分类准确率.

Abstract

Pipeline plays an important role in urban water supply and drainage,oil and gas transmission and so on.Real-time monitoring of pipeline is very important.In this paper,a deep learning residual network is proposed to classify the optical fiber vibration signals collected by distributed optical fiber vibration sensing system.The optical fiber was laid on the pipeline,and the signals collected by the distributed optical fiber vibration sensing system were regarded as one-dimensional time series.The Grami Angle field was used to encode the one-dimensional time series to obtain the corresponding two-dimensional images.The two-dimensional images were input into the deep learning residual network for classification,so as to realize the real-time monitoring of the pipeline.Experimental results show that this method has higher classification accuracy than converting one-dimensional data into gray image and then input it into deep learning neural network.

关键词

分布式光纤振动传感/深度学习/残差网络/格拉米角场

Key words

distributed fiber optic vibration sensing/deep learning/residual network/Grami Angle field

引用本文复制引用

出版年

2025
智能计算机与应用
哈尔滨工业大学

智能计算机与应用

影响因子:0.357
ISSN:2095-2163
段落导航相关论文