首页|基于物种分类树的野生动物监测图像层次化分类方法

基于物种分类树的野生动物监测图像层次化分类方法

扫码查看
针对野生动物监测图像物种分类模型结果复核成本高昂的问题,本文提出一种基于物种分类树的层次化分类方法。该方法在物种分类树的纲、目、科、属和种 5 个分类层级上进行零样本分类,通过提供更丰富的物种判定信息,降低复核模型结果的人工成本;利用类别间的层次关系,引入软决策和路径矫正策略,在细粒度类别上分类错误时,模型提供的粗粒度结果也具有参考价值。与路径矫正策略增强的基线方法相比,该方法在 5 个分类层级上的准确率分别提升了 0。27%、1。44%、1。42%、1。39%和 1。03%,并将错误严重程度降低了 1。1%。本文提出的方法提高了层次化分类的准确率和一致性,增强了模型输出结果的可解释性,降低了人工复核成本,有利于提高生态学家对深度学习模型的信赖程度和使用意愿。
Hierarchical classification method for wildlife monitoring images based on species classification tree
To address the problem of high cost in the review of model results in species classification in wildlife monitoring images,this work proposes a hierarchical classification method based on the species classification tree.This method simultaneously performs zero-shot classification at the five classification levels of Class,Order,Family,Genus and Species in the species classification tree and reduces the labor cost of reviewing model results by providing more information about species identification.The proposed method utilizes hierarchical relationships between categories and introduces soft decision and path correction strategies.The coarse-grained results provided by the model are also valuable,while classification fails at the fine-grained species level.Compared to the baseline method enhanced by the path correction strategy,the accuracy of the proposed method increased by 0.27%,1.44%,1.42%,1.39%,and 1.03%,respectively,at each classification level,and the mistake severity was reduced by 1.1%.The proposed method improves the accuracy and consistency of hierarchical classification,enhances the interpretability of classification results,reduces the labor cost of reviewing model results,and increases ecologists' confidence and willingness to use deep learning models.

wildlife monitoringspecies classificationzero-shot classificationhierarchical classification

王舜

展开 >

北京林业大学 工学院,北京 100083

野生动物监测 物种分类 零样本分类 层次化分类

2025

智能计算机与应用
哈尔滨工业大学

智能计算机与应用

影响因子:0.357
ISSN:2095-2163
年,卷(期):2025.15(1)