首页|面向连续-离散混合数据分类的强化学习表征方法

面向连续-离散混合数据分类的强化学习表征方法

扫码查看
人工智能技术的快速发展引爆了大数据时代,由此而产生了各类型数据,数据驱动着机器学习的发展,机器学习的性能也依赖表征模型对这类数据的表征结果,而传统的数据表征算法并不能使这类数据获得最佳区分性。为解决上述问题,本文在表征算法的基础上引入强化学习,以聚类评价指标作为奖励,获得最佳区分性的表征数据,并将其用于分类任务中。实验结果表明本文提出的强化学习表征方法相较于传统表征方法在机器学习分类任务上能取得更好的效果。
Reinforcement learning representation method for continuous-categorical mixed data classification
The rapid development of artificial intelligence technology has detonated the era of big data,resulting in various types of data,data drives the development of machine learning,and the performance of machine learning also depends on the representation of such data by the representation model,while the traditional representation algorithm can not make the best distinction of such data.In order to solve the above problems,this paper introduces reinforcement learning on the basis of the representation algorithm,takes the clustering evaluation index as the reward,obtains the best distinguishing representation data,and applies it to the classification task.Experimental results show that the proposed reinforcement learning representation method can achieve better results in machine learning classification tasks than traditional representation methods.

machine learningdata representationreinforcement learning

王聪、杨海根

展开 >

南京邮电大学 通信与信息工程学院,南京 210000

机器学习 数据表征 强化学习

2025

智能计算机与应用
哈尔滨工业大学

智能计算机与应用

影响因子:0.357
ISSN:2095-2163
年,卷(期):2025.15(1)