首页|基于结构化剪枝的矿区地质灾害检测算法

基于结构化剪枝的矿区地质灾害检测算法

扫码查看
本文提出基于YOLOv5s模型的结构化剪枝目标检测算法,解决矿区无人机巡检中常规算法过大、参数多、难以部署的问题。通过遍历网络中的BN层,对γ进行排序,并设定全局阈值评估通道重要性,剔除低于阈值的通道。实验结果显示,相较于YOLOv5s,该算法模型减小 52。9%,检测时间降低 18。1%,平均精度仅下降 1。5%。
Geological hazard detection algorithm in mining area based on structured pruning
In this paper,a structured pruning target detection algorithm based on YOLOv5s model is proposed to solve the problems of excessive size,many parameters and difficult deployment of conventional algorithms in UAV inspection in mining areas.By traversing the BN layer in the network,the γ are sorted and the global threshold is set to evaluate the importance of the channel and exclude channels below the threshold.The experimental results show that compared with YOLOv5s,the algorithm model is reduced by 52.9%,the detection time is reduced by 18.1%,and the average accuracy is only reduced by 1.5%.

Geological hazards in mining areasYOLOv5sobject detectionstructured pruning

刘毅、高海海、韩英杰、张文杰、李鹏越

展开 >

华晋焦煤有限责任公司,山西 吕梁 033000

太原理工大学 电气与动力工程学院,太原 030024

矿区地质灾害 YOLOv5s 目标检测 结构化剪枝

2025

智能计算机与应用
哈尔滨工业大学

智能计算机与应用

影响因子:0.357
ISSN:2095-2163
年,卷(期):2025.15(1)