首页|结合多变量气象因素的共享单车需求预测方法

结合多变量气象因素的共享单车需求预测方法

扫码查看
在城市交通领域,共享交通已广泛应用,其中共享单车作为一种主要的交通方式,以其高效的机动性和时效性而著称。由于单车数据中存在随机的取还车时间点,可能导致特征与数据之间产生虚假相关性,从而在某些特殊场景下影响模型的预测效果。为解决此问题,本文采用CNN-BiLSTM-Attention模型对共享单车进行需求预测分析。选取纽约市的共享单车数据,重点分析气象因素和时间因素对共享单车需求的影响,数据分析与可视化结果表明,湿度、高峰时段和温度等因素对共享单车需求具有显著影响。使用CNN-BiLSTM-Attention神经网络模型对每小时的共享单车需求进行单步预测,选取包括LightGBM和Bagging在内的多种机器学习模型作为基准进行对比,实验结果表明CNN-BiLSTM-Attention模型在预测任务中表现卓越,其R2 评分高达0。952,显著优于其他对比模型,均方根误差(RMSE)为0。018 3,相较于表现最佳的基准模型,本模型的RMSE降低了 5%,为共享单车运营者制定科学的管理与投放策略提供了数据支持和决策参考。
Demand forecasting method of shared bikes combined with multivariate meteorological factors
In the field of urban transportation,shared transportation has been widely used.As a major mode of transportation,shared bicycles are famous for their efficient mobility and timeliness.However,due to missing observations and randomly changing context conditions in the data set,false correlation between data and features occurs,which makes the prediction of the model fail in some special scenarios.To solve this problem,we use the CNN-BiLSTM-Attention model to predict and analyze the demand for shared bicycles.This study selected bike-sharing data in New York City and focused on analyzing the influence of meteorological factors and time factors on the demand for bike-sharing.The results of data analysis and visualization show that humidity,peak hours and temperature have a significant impact on the demand for bike-sharing.By using the CNN-BiLSTM-Attention neural network model to single-step predict the hourly bikesharing demand,this study selects a variety of mainstream models including LightGBM and Bagging as benchmarks for comparison.The experimental results show that the CNN-BiLSTM-Attention model performs well in the prediction task,its 2 score is as high as 0.952,which is significantly better than other comparison models,and the Root Mean Square Error(RMSE)is 0.018 3.Compared with the best performing baseline model,the RMSE of our model is reduced by 5%.This paper provides data support and decision-making reference for the operators of shared bicycles to formulate scientific management and delivery strategies.

intelligent transportationdemand predictionCNN-BiLSTM-Attentionshared bicyclesmachine learningmeteorological factors

邢雪、尹子赫、万乐

展开 >

吉林化工学院 信息与控制工程学院,吉林 吉林 132022

城市交通 需求预测 CNN-BiLSTM-Attention 共享单车 机器学习 气象因素

2025

智能计算机与应用
哈尔滨工业大学

智能计算机与应用

影响因子:0.357
ISSN:2095-2163
年,卷(期):2025.15(1)