首页|塑料分选方法设计及Zynq实现

塑料分选方法设计及Zynq实现

扫码查看
废旧塑料回收利用是解决当前由塑料导致的环境污染和资源浪费问题的重要方法之一,其难点在于使用传统方法识别和分类塑料种类效率较低、速度慢。本文基于Zynq设计了一种利用采集的塑料光谱图像结合卷积神经网络算法,实现多种塑料分选的方法。该系统在Xilinx Zedboard开发板上进行硬件设计和性能测试,采用定点量化方式对数据进行压缩,优化了数据存储方式,最后以0。13ms的前向推理速度和92。6%的识别准确率成功实现对聚乙烯、聚丙烯和聚苯乙烯等6种塑料的分类。
Design of plastic sorting method and implementation on Zynq
The recycling and reuse of waste plastics is one of the important methods to solve the current environmental pollution and resource waste caused by plastics.The difficulty lies in the low efficiency and slow speed of using traditional methods to identify and classify plastic types.This article presents a method for plastic sorting using a near-infrared spectrometer to acquire plastic spectral images and a convolutional neural network algorithm based on Zynq.The hardware design and performance test of the system were carried out on Xilinx Zedboard.The system is hardware designed and performance tested on the Xilinx Zedboard development board,and the data is compressed using fixed-point quantization and the data storage method is optimized.Finally,with a forward inference speed of 0.13 ms and a recognition accuracy of 92.6%,the system successfully classifies six types of plastics including polyethylene,polypropylene,and polystyrene.

Zedboardconvolutional neural networkplastic sortingnear-infrared spectroscopyhardware

陆川、黄志禹、梁凤霞、朱志国、罗林保

展开 >

合肥工业大学 微电子学院,合肥 230601

Zedboard 卷积神经网络 塑料分选 近红外光谱 硬件设计

2025

智能计算机与应用
哈尔滨工业大学

智能计算机与应用

影响因子:0.357
ISSN:2095-2163
年,卷(期):2025.15(1)