首页|基于SA-BP算法优化矿井自动通风系统

基于SA-BP算法优化矿井自动通风系统

Optimization of Mine Automatic Ventilation System based on SA-BP Algorithm

扫码查看
针对矿井自动通风系统风量控制不当,容易引起人身安全问题,提出一种基于SA-BP算法优化矿井自动通风系统的方法.运用环境传感器采集矿井CH4 浓度、粉尘、温度等数据,利用模拟退火算法(Simulated Annealing,SA)对归一化后的数据分析,由于BP神经网络负反向传播的特性,通过SA迭代优化BP神经网络的权值与阈值,将BP神经网络输出误差作为SA算法的适应度函数,选取通风量与CH4、粉尘之间的最优目标值.实验表明,该方法能够对矿井通风量进行精准预测,具备更好的鲁棒性与泛化能力.
In order to address the issue of improper control of air volume in mine automatic ventilation systems,which has the potential to pose personal safety risks,a method based on the SA-BP algorithm is proposed as a means of optimizing such systems.Environmental sensors are employed to gather data regarding methane concentration,dust,temperature,and other pertinent variables,which are then subjected to analysis using the Simulated Annealing(SA)algorithm.The negative back propagation characteristics of the BP neural network are utilized to optimize the weights and thresholds of the BP neural network through the SA iteration.The BP neural network output error is employed as the adaptive function of the SA algorithm,facilitating the selection of the optimal target between ventilation volume and CH4,dust,etc.The optimal objective value between ventilation and CH4 and dust is selected.Experimental results demonstrate that this method can accurately predict the ventilation of the mine,exhibiting enhanced robustness and generalization ability.

Simulated annealing algorithmNeural network algorithmMine ventilation prediction

党进才

展开 >

甘肃林业职业技术大学信息工程学院,甘肃 天水 741000

模拟退火算法 神经网络算法 矿井通风量预测

2024

电气传动自动化
天水电气传动研究所

电气传动自动化

影响因子:0.2
ISSN:1005-7277
年,卷(期):2024.46(5)