首页|基于改进BP神经网络的电气火灾预警系统设计

基于改进BP神经网络的电气火灾预警系统设计

Design of Electrical Fire Warning System Based on Improved BP Neural Network

扫码查看
针对电气火灾类型多样、火势大小不一及预警阈值差异大的问题,设计一个新系统以提高电气火灾预警的准确性和效率.采用分散式控制系统(DCS)作为硬件基础,部署MQ-135 烟雾传感器、IR Flame Sensor火焰传感器和LM35 温度传感器,并通过DCS系统进行数据采集.利用温度时序模型改进的BP神经网络,通过参数归一化和温度时序模型构建电气火灾阈值模型,实现电气火灾的准确判断和预警.实验结果表明,该系统能够对插座火灾、线路火灾和电气设备火灾三种类型进行准确的温度和烟雾检测,并且在检测时间上更为迅速.所设计的系统通过集成先进的传感器和优化数据处理算法,有效提升了电气火灾预警的准确性和响应速度.
To design a new system to improve the accuracy and efficiency of electrical fire warning,in response to the diverse types of electrical fires,varying sizes of fires,and large differences in warning thresholds.Using a distributed control system(DCS)as the hardware foundation,deploying MQ-135 smoke sensors,IR Flame Sensors,and LM35 temperature sensors,and collecting data through the DCS system.Using a BP neural network improved by temperature time series model,an electrical fire threshold model is constructed through parameter normalization and temperature time series model to achieve accurate judgment and early warning of electrical fires.The experimental results show that the system can accurately detect temperature and smoke for three types of fires:socket fires,line fires,and electrical equipment fires,and is more rapid in detection time.The designed system effectively improves the accuracy and response speed of electrical fire warning by integrating advanced sensors and optimizing data processing algorithms.

Improving BP neural networkElectrical firesEarly warning systemDCS system

张明丽

展开 >

宁夏建设职业技术学院,宁夏 银川 750000

改进BP神经网络 电气火灾 预警系统 DCS系统

2024

电气传动自动化
天水电气传动研究所

电气传动自动化

影响因子:0.2
ISSN:1005-7277
年,卷(期):2024.46(5)