首页|越流含水层系统中渗透系数随深度衰减的抽水试验解析模型

越流含水层系统中渗透系数随深度衰减的抽水试验解析模型

Analytical Model of Pumping Tests with Depth-Dependent Hydraulic Conductivity in Leakage Aquifer System

扫码查看
传统的抽水试验模型假定含水层的渗透系数是恒定的,然而,由于地质作用等因素的影响,含水层渗透系数存在随深度衰减的现象.建立考虑越流、井储效应和随深度衰减的渗透系数的抽水试验数学模型,并推导了半解析解,其中,假设渗透系数随深度呈指数衰减.系统分析随深度衰减的渗透系数对抽水试验结果的影响.结果表明:含水层渗透系数随深度衰减系数(A)越大,井筒内地下水的降深越大;当含水层渗透系数随深度衰减时,滤水管的位置对抽水试验结果的影响比较显著,滤水管在含水层顶部时的井筒内降深比滤水管在含水层底部时的井筒水位降深要小;传统的抽水试验模型采用井筒水位降深数据反演的常数渗透系数与随深度衰减的渗透系数平均值近似.
The traditional pumping test model typically assumes that the aquifer is a constant,whereas the actual aquifer frequently exhibits depth-dependent hydraulic conductivity due to geological effects and other factors.In this paper,it develops a mathematical model of pumping tests that takes into account leakage,wellbore storage effect,and depth-dependent hydraulic conductivity,and solves the semi-analytical solution,where the depth-dependent hydraulic conductivity represented by an exponential function.The results show that:the greater the attenuation coefficient(A)of depth-dependent hydraulic conductivity,the greater the drawdown in the wellbore and the greater the range of landing funnel caused by pumping.When the hydraulic conductivity decays with depth,the location of the well screen has a significant impact on the pumping test results,the drawdown at the wellbore with the well screen at the upper aquifer location is smaller than the drawdown at the wellbore with the well screen at the lower aquifer location;the estimated hydraulic conductivity is an approximation of the depth-decaying hydraulic conductivity based on drawdown at the wellbore by traditional pumping test model.

pumping testnumerical modelinghydraulic conductivityleakagehydrogeology

樊娟、侯恩科、靳德武、刘英锋、田干、施文光、王全荣

展开 >

西安科技大学地质与环境学院,陕西西安,710054

中煤科工西安研究院(集团)有限公司,陕西西安,710077

陕西省煤矿水害防治技术重点实验室,陕西西安,710077

中国地质大学环境学院,湖北武汉 430078

展开 >

抽水试验 数值模拟 渗透系数 越流 水文地质

国家重点研发计划项目中煤科工西安研究院(集团)有限公司科技创新基金项目湖北省自然科学基金

2017YFC08041082021XAYKF022021CFA089

2024

地球科学
中国地质大学

地球科学

CSTPCD北大核心
影响因子:1.447
ISSN:1000-2383
年,卷(期):2024.49(6)