首页|基于人工智能变形预测隧道坍塌失效概率评估方法

基于人工智能变形预测隧道坍塌失效概率评估方法

扫码查看
当隧道坍塌事故发生时,决策者往往没有足够的反应时间去采取相应的加固措施.超前预测隧道坍塌失效概率已成为隧道工程建设的关键问题.为了超前评估隧道坍塌失效概率并及时预警,本研究提出了一种多数据融合方法.该方法将云模型(CM)、多输出高斯过程回归(MOGPR)和改进的D-S理论相结合.通过融合多项监测数据(拱顶位移、水平收敛位移),减少数据的不确定性,提高评估结果的准确性和鲁棒性.此外,利用人工智能预测的围岩变形作为信息源,得到超前的坍塌失效概率评估.并将该方法运用于金珠帕隧道,为决策者提供更多的响应时间.最终,围岩支护只产生少量的变形裂缝,避免了隧道坍塌的发生.
A Method for Assessing Probability of Tunnel Collapse Based on Artificial Intelligence Deformation Prediction
When a tunnel collapse occurs,decision makers often do not have enough reaction time to take appropriate reinforcement measures.Advance prediction of tunnel collapse failure probability has become a key issue in tunnel engineering construction.As for assessing the tunneling collapse failure probability and providing basic risk-controlling strategies,in this study it proposes a novel multi-source information fusion approach that combines the cloud model(CM),the multi-output gaussian process regression(MOGPR),and the improved D-S evidence theory.The fusion of multiple monitoring data(vault displacement,horizontal convergence displacement)reduces data uncertainty and improves the accuracy and robustness of assessment results.In addition,the surrounding rock deformation predicted by artificial intelligence is used as a source of information to obtain an advanced collapse failure probability assessment.As a result,decision makers have a longer response time before the collapse occurs.Applying the method to the Jinzhupa tunnel provides decision makers with more response time.In the end,only a small amount of deformation cracks were generated in the surrounding rock support,avoiding the tunnel collapse.

tunnel collapsefailure probability assessmentcloud modelD-S evidence theorymulti-output gaussian process regressionsafety engineeringengineering geology

吴波、丘伟兴、徐世祥、蔡俊华、李贻材、张耀

展开 >

广西大学土木建筑工程学院,广西南宁 530004

东华理工大学土木与建筑工程学院,江西南昌 330013

广州城建职业学院建筑工程学院,广东 广州 510925

中南大学土木工程学院,湖南长沙 410075

三明莆炎高速公路有限责任公司,福建三明 365000

中铁十一局集团第一工程有限公司,湖北襄阳 441104

展开 >

隧道坍塌 失效概率评估 云模型 D-S理论 多输出高斯过程回归 安全工程 工程地质

2024

地球科学
中国地质大学

地球科学

CSTPCD北大核心
影响因子:1.447
ISSN:1000-2383
年,卷(期):2024.49(11)