首页|基于机器学习的绿泥石微量元素判别矿床类型

基于机器学习的绿泥石微量元素判别矿床类型

扫码查看
为了解绿泥石微量元素对不同成因矿床类型是否能够进行有效的分类判别,收集了13个来自斑岩型、矽卡岩型和浅成低温热液型3种类型矿床中的2 928条绿泥石微量元素数据,采用随机森林、支持向量机和人工神经网络3种不同的机器学习算法对矿床成因类型建立了分类模型并进行特征重要性分析.结果表明,依据Ni、Cr、Co、Sr、V、Zn 6种微量元素所建立的支持向量机模型分类效果最优,其Kappa系数最高为0.89,准确率、召回率和F1值的加权平均得分为0.96,Ni、V、Co为最关键的3个判别元素.基于绿泥石矿物微量元素结合机器学习方法能够实现对矿床类型的判别,对于区域尺度找矿勘查快速评价具有重要的指示意义.
Discriminating Deposit Types Using Chlorite Trace Elements Based on Machine Learning
In order to study whether chlorite trace elements can effectively classify different genetic deposit types,in this paper,2 928 trace element data of chlorite from 13 different deposits were collected,which belong to three distinct genetic types,including porphyry,skarn and epithermal deposits.Three different machine learning algorithms,including random forest,support vector machine(SVM)and artificial neural network,were used to establish classification models for the genetic types of deposits and analyze the importance of characteristics.The results show that the SVM model based on Ni,Cr,Co,Sr,V and Zn,6 trace elements have the best classification effect,the highest Kappa coefficient is 0.89,the weighted average score of precision,recall and F1 value reach 0.96,and Ni,V and Co are the three most critical discriminant elements.In this paper it fully confirms that the machine learning classification model based on chlorite mineral trace elements can discriminate deposit types and provide an important indicator for the rapid evaluation of regional scale prospecting.

chloritetrace elementgenetic type of depositmachine learningmineral deposits

侯霖莉、吴松、易建洲、次琼、陈烈、刘晓峰、魏守才、阿旺旦增、郑有业、刘鹏

展开 >

中国地质大学地球科学与资源学院,北京 100083

西藏自治区土地矿权交易和资源储量评审中心,西藏拉萨 850000

西藏自治区地质矿产勘查开发局第二地质大队,西藏拉萨 850000

西藏自治区地质矿产勘查开发局第五地质大队,西藏拉萨 850000

中国地质大学资源学院,湖北武汉 430074

展开 >

绿泥石 微量元素 矿床成因类型 机器学习 矿床学

2024

地球科学
中国地质大学

地球科学

CSTPCD北大核心
影响因子:1.447
ISSN:1000-2383
年,卷(期):2024.49(12)